1887

Abstract

A strictly aerobic, Gram-staining-negative, non-motile and rod-shaped bacterial strain, DR-9, was isolated from rhizosphere soil of the medicinal herb . Strain DR-9 grew at 20–40 °C, at pH 4.0–9.0 and in the presence of 0–1 % (w/v) NaCl. The major fatty acids were iso-C and summed feature 3 (Cω7 and/or Cω6 and/or iso-C 2-OH), MK-7 was the major isoprenoid quinone, and phosphatidylethanolamine and an unidentified aminophospholipid were the major polar lipids. A phylogenetic tree based on 16S rRNA gene sequences showed that strain DR-9 formed a lineage within the genus and was closely related to DRP28 (96.1 % sequence similarity), HMD1056 (95.9 % sequence similarity), XM-003 (95.8 %) and BDR-9 (95.1 %). The status of strain DR-9 as a representative of a separate species was confirmed by DNA hybridization, with 38.6, 36.3 and 29.9 % DNA–DNA relatedness with DRP28, XM-003 and BDR-9, respectively. The genomic DNA G+C content of strain DR-9 was 49.8 %. These data suggest that strain DR-9 should be considered as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DR-9 ( = KACC 16469 = NBRC 108839).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038398-0
2013-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2787.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038398-0&mimeType=html&fmt=ahah

References

  1. An D. S. , Yin C. R. , Lee S. T. , Cho C. H. . ( 2009; ). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. . Int J Syst Evol Microbiol 59:, 1122–1125. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baik K. S. , Park S. C. , Kim E. M. , Lim C. H. , Seong C. N. . ( 2010; ). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . . Int J Syst Evol Microbiol 60:, 134–139. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernardet J.-F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bruns A. , Rohde M. , Berthe-Corti L. . ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51:, 1997–2006. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Jones D. . ( 1981; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  6. Cui C. H. , Choi T. E. , Yu H. , Jin F. , Lee S. T. , Kim S. C. , Im W. T. . ( 2011; ). Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. . J Microbiol 49:, 393–398. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein, J. (2005). phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Han S. I. , Lee H. J. , Lee H. R. , Kim K. K. , Whang K. S. . ( 2012; ). Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis . . Int J Syst Evol Microbiol 62:, 632–637. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hirai Y. , Haque M. , Yoshida T. , Yokota K. , Yasuda T. , Oguma K. . ( 1995; ). Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. . J Bacteriol 177:, 5327–5333.[PubMed]
    [Google Scholar]
  13. Jeon Y. , Lee S.-S. , Chung B.-S. , Kim J.-M. , Bae J.-W. , Park S.-K. , Jeon C. O. . ( 2009; ). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. . Int J Syst Evol Microbiol 59:, 1451–1454. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jiang F. , Dai J. , Wang Y. , Xue X. , Xu M. , Guo Y. , Li W. , Fang C. , Peng F. . ( 2012; ). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62:, 1630–1635. [CrossRef] [PubMed]
    [Google Scholar]
  15. Joung Y. , Joh K. . ( 2011; ). Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. . Int J Syst Evol Microbiol 61:, 1506–1510. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kang S. J. , Jung Y. T. , Oh K. H. , Oh T. K. , Yoon J. H. . ( 2011; ). Mucilaginibacter boryungensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 1549–1553. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim B. C. , Lee K. H. , Kim M. N. , Lee J. , Shin K. S. . ( 2010; ). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum . . FEMS Microbiol Lett 309:, 130–135.[PubMed]
    [Google Scholar]
  18. Kim B. C. , Poo H. , Lee K. H. , Kim M. N. , Kwon O. Y. , Shin K. S. . ( 2011; ). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62:, 55–60. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim J. H. , Kang S. J. , Jung Y. T. , Oh T. K. , Yoon J. H. . ( 2012a; ). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 62:, 515–519. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; b). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kovacs N. . ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature 178:, 703–704. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  23. Lee H. R. , Kim K. K. , Whang K. S. . ( 2010; ). Isolation and phylogenetic characteristics of exopolysaccharide producing bacteria in a rhizosphere soil of medicinal herbs. . Kor J Microbiol 46:, 278–285.
    [Google Scholar]
  24. Luo X. , Zhang L. , Dai J. , Liu M. , Zhang K. , An H. , Fang C. . ( 2009; ). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. . Int J Syst Evol Microbiol 59:, 1447–1450. [CrossRef] [PubMed]
    [Google Scholar]
  25. Madhaiyan M. , Poonguzhali S. , Lee J. S. , Senthilkumar M. , Lee K. C. , Sundaram S. . ( 2010; ). Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. . Int J Syst Evol Microbiol 60:, 2451–2457. [CrossRef] [PubMed]
    [Google Scholar]
  26. Männistö M. K. , Tiirola M. , McConnell J. , Häggblom M. M. . ( 2010; ). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol 60:, 2849–2856. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Microbiol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  29. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Pankratov T. A. , Tindall B. J. , Liesack W. , Dedysh S. N. . ( 2007; ). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. . Int J Syst Evol Microbiol 57:, 2349–2354. [CrossRef] [PubMed]
    [Google Scholar]
  31. Reichenbach H. . ( 1992; ). The order Cytophagales. . In The Prokaryotes, , 2nd edn., vol. 4, pp. 3631–3675. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . . New York:: Springer;.[CrossRef]
    [Google Scholar]
  32. Saito H. , Miura K. . ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. . 160 Biochim Biophys Acta 72:, 619–629.[PubMed] [CrossRef]
    [Google Scholar]
  33. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  35. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Steyn P. L. , Segers P. , Vancanneyt M. , Sandra P. , Kersters K. , Joubert J. J. . ( 1998; ). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef] [PubMed]
    [Google Scholar]
  37. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  38. Urai M. , Aizawa T. , Nakagawa Y. , Nakajima M. , Sunairi M. . ( 2008; ). Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. . Int J Syst Evol Microbiol 58:, 2046–2050. [CrossRef] [PubMed]
    [Google Scholar]
  39. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  40. Yoon J. H. , Kang S. J. , Park S. Y. , Oh T. K. . ( 2012; ). Mucilaginibacter litoreus sp. nov., isolated from marine sand. . Int J Syst Evol Microbiol 62:, 2822–2827.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038398-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038398-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error