1887

Abstract

Three novel actinobacteria, strains 39, 40 and 41, were isolated from soil collected from Barrientos Island in the Antarctic. The taxonomic status of these strains was determined using a polyphasic approach. Comparison of 16S rRNA gene sequences revealed that strain 39 represented a novel lineage within the family and was most closely related to members of the genera (96.9 % 16S rRNA gene sequence similarity), (95.7 %), (94.4–95.3 %), (94.6 %), (94.3 %), (94.2 %) and (93.1 %). Cells were irregular cocci and short rods. The peptidoglycan type was A4α with an -Lys–-Ser–-Asp interpeptide bridge. The cell-wall sugars were galactose and glucose. The major menaquinone was MK-8(H). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, two glycolipids and one unknown phospholipid. The acyl type of the cell-wall polysaccharide was -acetyl. The major cellular fatty acids were anteiso-C (41.97 %), anteiso-Cω9 (32.16 %) and iso-C (7.68 %). The DNA G+C content of strain 39 was 68.4 mol%. On the basis of phylogenetic and phenotypic differences from other genera of the family , a novel genus and species, gen. nov., sp. nov., is proposed; the type strain of the type species is 39 ( = CGMCC 4.6864  = DSM 24617).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038232-0
2013-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/241.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038232-0&mimeType=html&fmt=ahah

References

  1. Ara I., Yamamura H., Tsetseg B., Daram D., Ando K.. ( 2010;). Luteipulveratus mongoliensis gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae. . Int J Syst Evol Microbiol 60:, 574–579. [CrossRef][PubMed]
    [Google Scholar]
  2. Atlas R. M.. ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C... Boca Raton:: CRC Press;.
    [Google Scholar]
  3. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  4. Cordero M. R., Zumalacárregui J. M.. ( 2000;). Characterization of Micrococcaceae isolated from salt used for Spanish dry-cured ham. . Lett Appl Microbiol 31:, 303–306. [CrossRef][PubMed]
    [Google Scholar]
  5. De la Rosa M. C., Mohino M. R., Mohino M., Mosso M. A.. ( 1990;). Characteristics of micrococci and staphylococci isolated from semipreserved meat products. . Food Microbiol 7:, 207–215. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  11. Hong K., Gao A. H., Xie Q. Y., Gao H., Zhuang L., Lin H. P., Yu H. P., Li J., Yao X. S.. & other authors ( 2009;). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. . Mar Drugs 7:, 24–44. [CrossRef][PubMed]
    [Google Scholar]
  12. Kates M.. ( 1986;). Techniques of Lipidology, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  13. Kelly K. L.. ( 1964;). Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. MacKenzie S. L.. ( 1987;). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. K.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Papamanoli E., Kotzekidou P., Tzanetakis N., Litopoulou-Tzanetaki E.. ( 2002;). Characterization of Micrococcaceae isolated from dry fermented sausage. . Food Microbiol 19:, 441–449. [CrossRef]
    [Google Scholar]
  20. Pathom-Aree W., Nogi Y., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M.. ( 2006;). Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. . Int J Syst Evol Microbiol 56:, 2303–2307. [CrossRef][PubMed]
    [Google Scholar]
  21. Pospiech A., Neumann B.. ( 1995;). A versatile quick-prep of genomic DNA from Gram-positive bacteria. . Trends Genet 11:, 217–218. [CrossRef][PubMed]
    [Google Scholar]
  22. Ruckmani A., Kaur I., Schumann P., Klenk H.-P., Mayilraj S.. ( 2011;). Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. . Int J Syst Evol Microbiol 61:, 2419–2424. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  25. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  26. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  27. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Schumann P.. ( 2000;). Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. . Int J Syst Evol Microbiol 50:, 1279–1285. [CrossRef][PubMed]
    [Google Scholar]
  29. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  30. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  31. Sugimoto S., Kato T., Ito M., Sakata N., Tsuchida T., Matsumoto A., Takahashi Y.. ( 2011;). Branchiibius hedensis gen. nov., sp. nov., an actinobacterium isolated from a Japanese codling (Physiculus japonicus). . Int J Syst Evol Microbiol 61:, 1195–1200. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4, molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  33. Tang S. K., Wu J. Y., Wang Y., Schumann P., Li W. J.. ( 2010;). Yimella lutea gen. nov., sp. nov., a novel actinobacterium of the family Dermacoccaceae. . Int J Syst Evol Microbiol 60:, 659–663. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  35. Uchida K., Aida A.. ( 1977;). Acyl type of bacterial cell wall: its simple identification by colorimetric method. . J Gen Appl Microbiol 23:, 249–260. [CrossRef]
    [Google Scholar]
  36. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A.. ( 1985;). Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. . J Chromatogr A 347:, 109–120. [CrossRef][PubMed]
    [Google Scholar]
  37. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J.. ( 1983;). Numerical classification of Streptomyces and related genera. . J Gen Microbiol 129:, 1743–1813.[PubMed]
    [Google Scholar]
  38. Yamada K., Komagata K.. ( 1972;). Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. . J Gen Appl Microbiol 18:, 399–416. [CrossRef]
    [Google Scholar]
  39. Zhi X. Y., Li W. J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038232-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038232-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error