1887

Abstract

A novel strain, named S4, was obtained from industrial wastewater in Xiaoshan, Zhejiang Province, China. Cells were Gram-negative, neutrophilic and non-spore-forming and moved by means of a polar flagellum. Normal cells were 0.8–0.9×1.3–1.9 µm and the cells elongated to 10–25 µm when cultivated at high temperatures. Strain S4 grew at 15–50 °C (optimum at 48 °C), pH 5.5–8.5 (optimum 7.0–7.5) and 0–2 % (optimum 0.5 %) (w/v) NaCl. Ubiquinone-8 was the predominant respiratory quinone. C, summed feature 3 (Cω7 and/or iso-C 2-OH) and C cyclo were the major cellular fatty acids. The major 3-OH fatty acid was C 3-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown aminoglycolipid. The genomic DNA G+C content was 68.8 mol%. Based on 16S rRNA gene sequences alignment, the most closely related strains were members of the genera (94.6–95.6 % similarities), (94.9–95.6 %), (94.8–95.4 %), (94.1–95.2 %) and (95.1 %). Phylogenetic analysis showed the closest relatives of strain S4 were members of the genus . Based on phenotypic and phylogenetic characteristics, we suggest that strain S4 represents a novel species of a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is S4 ( = CGMCC 1.10977 = JCM 17803).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038158-0
2013-06-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2062.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038158-0&mimeType=html&fmt=ahah

References

  1. Blackall L. L., Crocetti G. R., Saunders A. M., Bond P. L.. ( 2002;). A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. . Antonie van Leeuwenhoek 81:, 681–691. [CrossRef][PubMed]
    [Google Scholar]
  2. Chang Y. H., Han J. I., Chun J., Lee K. C., Rhee M. S., Kim Y. B., Bae K. S.. ( 2002;). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. . Int J Syst Evol Microbiol 52:, 377–381.[PubMed]
    [Google Scholar]
  3. Choi J.-H., Kim M.-S., Roh S. W., Bae J.-W.. ( 2010;). Acidovorax soli sp. nov., isolated from landfill soil. . Int J Syst Evol Microbiol 60:, 2715–2718. [CrossRef][PubMed]
    [Google Scholar]
  4. Chou J.-H., Sheu S.-Y., Lin K.-Y., Chen W.-M., Arun A. B., Young C.-C.. ( 2007;). Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. . Int J Syst Evol Microbiol 57:, 887–891. [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  6. Dong X.-Z., Cai M.-Y.. (editors) ( 2001;). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398. Beijing:: Science Press; (in Chinese).
    [Google Scholar]
  7. Dubinina G. A., Grabovich M. Y.. ( 1984;). Isolation, cultivation, and characteristics of Macromonas bipunctata. . Microbiology (English translation of Microbiologiia) 53:, 610–617.
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gardan L., Dauga C., Prior P., Gillis M., Saddler G. S.. ( 2000;). Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. . Int J Syst Evol Microbiol 50:, 235–246. [CrossRef][PubMed]
    [Google Scholar]
  11. Gardan L., Stead D. E., Dauga C., Gillis M.. ( 2003;). Acidovorax valerianellae sp. nov., a novel pathogen of lamb’s lettuce [Valerianella locusta (L.) Laterr]. . Int J Syst Evol Microbiol 53:, 795–800. [CrossRef][PubMed]
    [Google Scholar]
  12. Ginige M. P., Hugenholtz P., Daims H., Wagner M., Keller J., Blackall L. L.. ( 2004;). Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. . Appl Environ Microbiol 70:, 588–596. [CrossRef][PubMed]
    [Google Scholar]
  13. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G.. ( 2006;). Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov.. Int J Syst Evol Microbiol 56:, 569–576. [CrossRef][PubMed]
    [Google Scholar]
  14. Grishchenkov V. G., Townsend R. T., McDonald T. J., Autenrieth R. L., Bonner J. S., Boronin A. M.. ( 2000;). Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. . Process Biochem 35:, 889–896. [CrossRef]
    [Google Scholar]
  15. Gumaelius L., Magnusson G., Pettersson B., Dalhammar G.. ( 2001;). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. . Int J Syst Evol Microbiol 51:, 999–1006. [CrossRef][PubMed]
    [Google Scholar]
  16. Halpern M., Shakèd T., Schumann P.. ( 2009;). Brachymonas chironomi sp. nov., isolated from a chironomid egg mass, and emended description of the genus Brachymonas. . Int J Syst Evol Microbiol 59:, 3025–3029. [CrossRef][PubMed]
    [Google Scholar]
  17. Heylen K., Lebbe L., De Vos P.. ( 2008;). Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. . Int J Syst Evol Microbiol 58:, 73–77. [CrossRef][PubMed]
    [Google Scholar]
  18. Hiraishi A., Shin Y. K., Sugiyama J.. ( 1995;). Brachymonas denitrificans gen, nov, sp, nov, an aerobic chemoorganotrophic bacterium which contains rhodoquinones, and evolutionary relationships of rhodoquinone producers to bacterial species with various quinone classes. . J Gen Appl Microbiol 41:, 99–117. [CrossRef]
    [Google Scholar]
  19. Huo Y. Y., Xu X. W., Cui H. L., Wu M.. ( 2010;). Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline–alkaline soil. . Int J Syst Evol Microbiol 60:, 1383–1386. [CrossRef][PubMed]
    [Google Scholar]
  20. Juretschko S., Loy A., Lehner A., Wagner M.. ( 2002;). The microbial community composition of a nitrifying–denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. . Syst Appl Microbiol 25:, 84–99. [CrossRef][PubMed]
    [Google Scholar]
  21. Kamekura M., Kates M.. ( 1988;). Lipids of halophilic archaebacteria. . In Halophilic Bacteria II, pp. 25–54. Edited by Rodriguez Valera F... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  22. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  23. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  24. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  25. Lee N., Nielsen P. H., Aspegren H., Henze M., Schleifer K. H., la Cour Jansen J.. ( 2003;). Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal. . Syst Appl Microbiol 26:, 211–227. [CrossRef][PubMed]
    [Google Scholar]
  26. Li D., Rothballer M., Schmid M., Esperschütz J., Hartmann A.. ( 2011;). Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. . Int J Syst Evol Microbiol 61:, 2589–2594. [CrossRef][PubMed]
    [Google Scholar]
  27. Mechichi T., Stackebrandt E., Fuchs G.. ( 2003;). Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. . Int J Syst Evol Microbiol 53:, 147–152. [CrossRef][PubMed]
    [Google Scholar]
  28. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  29. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  30. Purkhold U., Pommerening-Röser A., Juretschko S., Schmid M. C., Koops H. P., Wagner M.. ( 2000;). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. . Appl Environ Microbiol 66:, 5368–5382. [CrossRef][PubMed]
    [Google Scholar]
  31. Rouvière P. E., Chen M. W.. ( 2003;). Isolation of Brachymonas petroleovorans CHX, a novel cyclohexane-degrading β-proteobacterium. . FEMS Microbiol Lett 227:, 101–106. [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  33. Shen P., Chen X.-D.. ( 2008;). [Experiment of Microbiology]. Beijing:: Higher Education Press; (in Chinese).
    [Google Scholar]
  34. Spring S., Wagner M., Schumann P., Kämpfer P.. ( 2005;). Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov.. Int J Syst Evol Microbiol 55:, 621–629. [CrossRef][PubMed]
    [Google Scholar]
  35. Tago Y., Yokota A.. ( 2004;). Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. . J Gen Appl Microbiol 50:, 243–248. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamaoka J., Ha D., Komagata K.. ( 1987;). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. . Int J Syst Bacteriol 37:, 52–59. [CrossRef]
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  39. Wauters G., De Baere T., Willems A., Falsen E., Vaneechoutte M.. ( 2003;). Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. . Int J Syst Evol Microbiol 53:, 859–862. [CrossRef][PubMed]
    [Google Scholar]
  40. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J.. ( 1990;). Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov.. Int J Syst Bacteriol 40:, 384–398. [CrossRef][PubMed]
    [Google Scholar]
  41. Willems A., Pot B., Falsen E., Vandamme P., Gillis M., Kersters K., De Ley J.. ( 1991;). Polyphasic taxonomic study of the emended genus Comamonas: relationship to Aquaspirillum aquaticum, E. Falsen group 10, and other clinical isolates. . Int J Syst Bacteriol 41:, 427–444. [CrossRef]
    [Google Scholar]
  42. Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J.. ( 1992;). Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. . Int J Syst Bacteriol 42:, 107–119. [CrossRef][PubMed]
    [Google Scholar]
  43. Xu X. W., Wu Y. H., Zhou Z., Wang C. S., Zhou Y. G., Zhang H. B., Wang Y., Wu M.. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov., and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57:, 1619–1624. [CrossRef][PubMed]
    [Google Scholar]
  44. Xu X. W., Huo Y. Y., Wang C. S., Oren A., Cui H. L., Vedler E., Wu M.. ( 2011;). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. . Int J Syst Evol Microbiol 61:, 1817–1822. [CrossRef][PubMed]
    [Google Scholar]
  45. Young C.-C., Chou J.-H., Arun A. B., Yen W.-S., Sheu S.-Y., Shen F.-T., Lai W.-A., Rekha P. D., Chen W.-M.. ( 2008;). Comamonas composti sp. nov., isolated from food waste compost. . Int J Syst Evol Microbiol 58:, 251–256. [CrossRef][PubMed]
    [Google Scholar]
  46. Yu X. Y., Li Y. F., Zheng J. W., Li Y., Li L., He J., Li S. P.. ( 2011;). Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. . Int J Syst Evol Microbiol 61:, 255–258. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038158-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038158-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error