1887

Abstract

An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A, was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50′ 14.0″ N 75° 32′ 53.4″ W). Cells of strain USBA A were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37–55 °C and pH 6.0–8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A did not grow autotrophically (with CO as carbon source and H as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml). The predominant fatty acids were iso-C, C and iso-C and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A belonged in the phylum and that its closest relative was JW/MS-VS5 (95.0 % sequence similarity). A DNA–DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A and DSM 13723. Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA–DNA hybridization experiments, strain USBA A represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is USBA A ( = CMPUJ U833  = DSM 22093).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037937-0
2013-04-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1396.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037937-0&mimeType=html&fmt=ahah

References

  1. Alfaro C., Jaramillo L.. ( 2002;). Inventario y geoquímica de las fuentes termales de Santa Rosa de Cabal (Risaralda). pp. 5–11. Ministerio de Minas y Energía. . INGEOMINAS, Bogotá D. C., Colombia.
    [Google Scholar]
  2. Alfaro C., Aguirre A., Jaramillo L. F.. ( 2002;). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. pp. 101. Ministerio de Minas y Energía. . INGEOMINAS, Bogotá D. C., Colombia.
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  4. Andrews K. T., Patel B. K. C.. ( 1996;). Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. . Int J Syst Bacteriol 46:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
  5. Chrisostomos S., Patel B. K. C., Dwivedi P. P., Denman S. E.. ( 1996;). Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from the deep-seated nonvolcanically heated waters of an Indian artesian aquifer. . Int J Syst Evol Bacteriol 46:, 497–501. [CrossRef]
    [Google Scholar]
  6. Cord-Ruwisch R.. ( 1985;). A quick method of determination of dissolved and precipitates sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biology sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . In Methods in Microbiology, vol. 36, pp. 117–132. Edited by Norris J. R., Ribbons D. W... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  10. Imhoff-Stuckle D., Pfennig N.. ( 1983;). Isolation and characterization of a nicotinic-acid degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov.. Arch Microbiol 136:, 194–198. [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–123. Edited by Munro H. H... New York:: Academic Press;.
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  13. Ogg C. D., Patel B. K. C.. ( 2009;). Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. . Int J Syst Evol Microbiol 59:, 95–101. [CrossRef][PubMed]
    [Google Scholar]
  14. Ogg C. D., Patel B. K. C.. ( 2011a;). Caloramator mitchellensis sp. nov., a thermoanaerobe isolated from the geothermal waters of the Great Artesian Basin of Australia, and emended description of the genus Caloramator. . Int J Syst Evol Microbiol 61:, 644–653. [CrossRef][PubMed]
    [Google Scholar]
  15. Ogg C. D., Patel B. K. C.. ( 2011b;). Draft genome sequence of Caloramator australicus strain RC3T, a thermoanaerobe from the Great Artesian Basin of Australia. . J Bacteriol 193:, 2664–2665. [CrossRef][PubMed]
    [Google Scholar]
  16. Patel B. K. C., Morgan H. W., Daniel R. M.. ( 1985;). Fervidobaterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. . Arch Microbiol 141:, 63–69. [CrossRef]
    [Google Scholar]
  17. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M.. ( 1987;). Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. . Int J Syst Bacteriol 37:, 123–126. [CrossRef]
    [Google Scholar]
  18. Plugge C. M., Zoetendal E. G., Stams A. J.. ( 2000;). Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. . Int J Syst Evol Microbiol 50:, 1155–1162. [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Seyfried M., Lyon D., Rainey F. A., Wiegel J.. ( 2002;). Caloramator viterbensis sp. nov., a novel thermophilic, glycerol-fermenting bacterium isolated from a hot spring in Italy. . Int J Syst Evol Microbiol 52:, 1177–1184. [CrossRef][PubMed]
    [Google Scholar]
  21. Sørensen J.. ( 1982;). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. . Appl Environ Microbiol 43:, 319–324.[PubMed]
    [Google Scholar]
  22. Tarlera S., Muxí L., Soubes M., Stams A. J.. ( 1997;). Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium. . Int J Syst Bacteriol 47:, 651–656. [CrossRef][PubMed]
    [Google Scholar]
  23. Van de Peer Y., Jansen J., De Rijk P., De Wachter R.. ( 1997;). Database on the structure of small ribosomal subunit RNA. . Nucleic Acids Res 25:, 111–116. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037937-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037937-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error