1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile, non-spore-forming bacterium, designated strain BY-1, was isolated from a soil sample from the city of Qiqihar in Heilongjiang Province, PR China. Strain BY-1 grew optimally at pH 7.0 and 30–35 °C in the presence of 0.5 % (w/v) NaCl. Analysis of 16S rRNA gene sequences revealed that strain BY-1 fell within the radiation of the genus , and showed highest 16S rRNA gene sequence similarities to IAM 13000 (99.5 %) and HR2 (97.3 %); the levels of sequence similarity with respect to other recognized species of the genus were <96.7 %. Strain BY-1 showed low DNA–DNA relatedness values with IAM 13000 (29±3.1 %) and HR2 (21±1.5 %). The GC content of the genomic DNA of strain BY-1 was 55.3 mol%. The major fatty acids were C, C and summed feature 3 (Cω6 and/or Cω7). Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and the major ubiquinone was Q-9. Data obtained in this study indicated that this isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BY-1 ( = KACC 15471 = ACCC 05688).

Funding
This study was supported by the:
  • , National Natural Science Foundation of China , (Award 30900044)
  • , Fund for the Doctoral Program of Higher Education , (Award 20090097120031)
  • , Social Development Program Fund of Jiangsu Province , (Award BE2011783)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037796-0
2012-11-01
2021-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2608.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037796-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Eck R. V., Dayhoff M. O. 1966 Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. He L., Li W., Huang Y., Wang L., Liu Z. H., Lanoot B., Vancanneyt M., Swings J. 2005; Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55:1939–1944 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yooh S. H., Kim M., Na H., Park S. C., Joen Y. S., Lee J. H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon‐e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.. Int J Syst Evol Microbiol 62:716–721 [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  13. King E. O., Ward W. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307
    [Google Scholar]
  14. Kodama K., Kimura N., Komagata K. 1985; Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int J Syst Evol Microbiol 35:467–474
    [Google Scholar]
  15. Liu R., Liu H., Feng H., Wang X., Zhang C. X., Zhang K. Y., Lai R. 2008; Pseudomonas duriflava sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol 58:1404–1408 [CrossRef][PubMed]
    [Google Scholar]
  16. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 47:87–95 [CrossRef]
    [Google Scholar]
  18. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446[PubMed]
    [Google Scholar]
  19. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  20. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Sambrook J., Russell D. W. 2001 Molecular cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Sneath P. H. A., Stevens M., Sackin M. J. 1981; Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47:423–448 [CrossRef][PubMed]
    [Google Scholar]
  27. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov.. Int J Syst Evol Microbiol 51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  31. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  32. Wang B. Z., Guo P., Zheng J. W., Hang B. J., Li L., He J., Li S. P. 2011; Sphingobium wenxiniae sp. nov., a synthetic pyrethroid (SP)-degrading bacterium isolated from activated sludge in an SP-manufacturing wastewater treatment facility. Int J Syst Evol Microbiol 61:1776–1780 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037796-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037796-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error