sp. nov., isolated from an indoor wall Free

Abstract

A Gram-positive rod, designated 01-Gi-001, was isolated from a wall colonized with moulds. The 16S rRNA gene sequence analysis clearly showed that the isolate belonged to the genus . On the basis of pairwise comparisons of 16S rRNA gene sequences, strain 01-Gi-001 was most closely related to DSM 16089 (98.9 % sequence similarity), Shh49 (98.7 %), DSM 13468 (98.3 %) and DSM 12966 (98.1 %). The diagnostic diamino acid of the peptidoglycan was ornithine. The major menaquinones detected were MK-13 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unknown phospholipid and one unknown glycolipid. The major fatty acids were anteiso-C, iso-C and anteiso-C, which were in agreement with those reported for other members of the genus . Physiological and biochemical characteristics and DNA–DNA relatedness between strain 01-Gi-001 and the type strains of its closest phylogenetic neighbours showed clear differences. For this reason, strain 01-Gi-001 ( = DSM 22178 = CCM 7640) is proposed as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037705-0
2012-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2669.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037705-0&mimeType=html&fmt=ahah

References

  1. Becker B., Lechevalier M. P., Lechevalier H. A. 1965; Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 13:236–243[PubMed]
    [Google Scholar]
  2. Behrendt U., Ulrich A., Schumann P. 2001; Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov.. Int J Syst Evol Microbiol 51:1267–1276[PubMed]
    [Google Scholar]
  3. Buczolits S., Schumann P., Valens M., Rosselló-Mora R., Busse H.-J. 2008; Identification of a bacterial strain isolated from the liver of a laboratory mouse as Microbacterium paraoxydans and emended description of the species Microbacterium paraoxydans Laffineur et al 2003. Int J Microbiol 48:243–251 [View Article]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D., Kroppenstedt R. M. 1983; Reclassification of Brevibacterium imperiale (Steinhaus) and ‘Corynebacterium laevaniformans’ (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen) as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:65–78 [View Article]
    [Google Scholar]
  7. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  8. Kageyama A., Takahashi Y., Matsuo Y., Adachi K., Kasai H., Shizuri Y., Ōmura S. 2007; Microbacterium flavum sp. nov. and Microbacterium lacus sp. nov., isolated from marine environments. Actinomycetologica 21:53–58 [View Article]
    [Google Scholar]
  9. Kageyama A., Matsuo Y., Kasai H., Shizuri Y., Ōmura S., Takahashi Y. 2008; Microbacterium awajiense sp. nov., Microbacterium fluvii sp. nov. and Microbacterium pygmaeum sp. nov.. Actinomycetologica 22:1–5 [View Article]
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 2004; Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:749–751 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  13. Kämpfer P., Martin K., Schäfer J., Schumann P. 2009; Kytococcus aerolatus sp. nov., isolated from indoor air in a room colonized with moulds. Syst Appl Microbiol 32:301–305 [View Article][PubMed]
    [Google Scholar]
  14. Kim K. K., Park H. Y., Park W., Kim I. S., Lee S.-T. 2005; Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55:2075–2079 [View Article][PubMed]
    [Google Scholar]
  15. Li W.-J., Chen H.-H., Kim C.-J., Park D.-J., Tang S.-K., Lee J.-C., Xu L.-H., Jiang C.-L. 2005; Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol 55:67–70 [View Article][PubMed]
    [Google Scholar]
  16. Liu J., Nakayama T., Hemmi H., Asano Y., Tsuruoka N., Shimomura K., Nishijima M., Nishino T. 2005; Microbacterium natoriense sp. nov., a novel d-aminoacylase-producing bacterium isolated from soil in Natori, Japan. Int J Syst Evol Microbiol 55:661–665 [View Article][PubMed]
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  18. Madhaiyan M., Poonguzhali S., Lee J. S., Lee K. C., Saravanan V. S., Santhanakrishnan P. 2010; Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60:1687–1692 [View Article][PubMed]
    [Google Scholar]
  19. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  20. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Host & Sons;
    [Google Scholar]
  21. Park H. Y., Kim K. K., Jin L., Lee S.-T. 2006; Microbacterium paludicola sp. nov., a novel xylanolytic bacterium isolated from swamp forest. Int J Syst Evol Microbiol 56:535–539 [View Article][PubMed]
    [Google Scholar]
  22. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  23. Rivas R., Trujillo M. E., Sánchez M., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra . Int J Syst Evol Microbiol 54:513–517 [View Article][PubMed]
    [Google Scholar]
  24. Roessner U., Wagner C., Kopka J., Trethewey R. N., Willmitzer L. 2000; Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142 [View Article][PubMed]
    [Google Scholar]
  25. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  26. Takeuchi M., Hatano K. 1998a; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . Int J Syst Bacteriol 48:739–747 [View Article][PubMed]
    [Google Scholar]
  27. Takeuchi M., Hatano K. 1998b; Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov.. Int J Syst Bacteriol 48:973–982 [View Article][PubMed]
    [Google Scholar]
  28. Young C.-C., Kämpfer P., Shen F.-T., Lai W.-A., Arun A. B. 2005; Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactucasativa L. (garden lettuce). Int J Syst Evol Microbiol 55:423–426 [View Article][PubMed]
    [Google Scholar]
  29. Young C.-C., Busse H.-J., Langer S., Chu J.-N., Schumann P., Arun A. B., Shen F.-T., Rekha P. D., Kämpfer P. 2010; Microbacterium agarici sp. nov., Microbacterium humi sp. nov. and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei . Int J Syst Evol Microbiol 60:854–860 [View Article][PubMed]
    [Google Scholar]
  30. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
  31. Zlamala C., Schumann P., Kämpfer P., Valens M., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002; Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Bacteriol 52:1229–1234 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037705-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037705-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed