1887

Abstract

The taxonomic positions of two Gram-staining-negative, psychrophilic bacteria, which were isolated from alpine glacier cryoconite and designated strains Cr4-12 and Cr4-35, were investigated using a polyphasic approach. Both novel strains contained ubiquinone Q-8 as the sole quinone, summed feature 3 (Cω7 and/or Cω6) and C as the dominant cellular fatty acids, putrescine and 2-hydroxyputrescine as the major polyamines, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genomic DNA G+C contents of strains Cr4-12 and Cr4-35 were 61.3 mol% and 60.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the genus . Although the 16S rRNA gene sequences of strains Cr4-12 and Cr4-35 were very similar (98.7 % sequence similarity), hybridizations indicated a DNA–DNA relatedness value of only 26.9 % between the two novel strains. In pairwise comparisons with the type strains of recognized species, strains Cr4-12 and Cr4-35 showed 16S rRNA gene sequence similarities of 96.4–98.5 % and 96.5–98.4 %, respectively. Based on the phenotypic and phylogenetic evidence and DNA–DNA relatedness data, strains Cr4-12 and Cr4-35 represent two novel species within the genus , for which the names sp. nov. and sp. nov., respectively, are proposed. The type strain of sp. nov. is Cr4-12 ( = DSM 24062  = LMG 26049  = KACC 15089) and that of sp. nov. is Cr4-35 ( = DSM 24248  = LMG 26050  = KACC 15090).

Funding
This study was supported by the:
  • , Aktion D. Swarovski & Co. 2009

Erratum

This article contains a correction applying to the following content:
sp. nov. and sp. nov., isolated from alpine glacier cryoconite
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037556-0
2012-11-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2662.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037556-0&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  5. Darcy J. L., Lynch R. C., King A. J., Robeson M. S., Schmidt S. K. 2011; Global distribution of Polaromonas phylotypes – evidence for a highly successful dispersal capacity. PLoS ONE 6:e23742 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Feller G., Gerday C. 2003; Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Foght J., Aislabie J. 2005; Enumeration of soil microorganisms. In Manual of Soil Analysis pp. 261–280 Edited by Margesin R., Schinner F. Berlin, Heidelberg: Springer-Verlag;
    [Google Scholar]
  10. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  11. Irgens R. L., Gosink J. J., Staley J. T. 1996; Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826 [CrossRef][PubMed]
    [Google Scholar]
  12. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L. 2004; Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54:93–97 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Busse H.-J., Falsen E. 2006; Polaromonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 56:605–608 [CrossRef][PubMed]
    [Google Scholar]
  14. Margesin R. 2009; Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262 [CrossRef][PubMed]
    [Google Scholar]
  15. Margesin R., Schinner F. 1997; Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol 47:462–468 [CrossRef]
    [Google Scholar]
  16. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [CrossRef][PubMed]
    [Google Scholar]
  17. Mattes T. E., Alexander A. K., Richardson P. M., Munk A. C., Han C. S., Stothard P., Coleman N. V. 2008; The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416 [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167[PubMed]
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7[PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sambrook J., Frisch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  24. Schlegel H. G. 1992 Allgemeine Mikrobiologie Stuttgart: Georg Thieme;
    [Google Scholar]
  25. Sizova M., Panikov N. 2007; Polaromonas hydrogenivorans sp. nov., a psychrotolerant hydrogen-oxidizing bacterium from Alaskan soil. Int J Syst Evol Microbiol 57:616–619 [CrossRef][PubMed]
    [Google Scholar]
  26. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Weon H. Y., Yoo S. H., Hong S. B., Kwon S. W., Stackebrandt E., Go S. J., Koo B. S. 2008; Polaromonas jejuensis sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 58:1525–1528 [CrossRef][PubMed]
    [Google Scholar]
  33. Wu C., Lu X., Qin M., Wang Y., Ruan J. 1989; Analysis of menaquinone compound in microbial cells by HPLC. Microbiology (English translation of Microbiologiia) 16:176–178
    [Google Scholar]
  34. Yagi J. M., Sims D., Brettin T., Bruce D., Madsen E. L. 2009; The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11:2253–2270 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang D.-C., Schinner F., Margesin R. 2010; Pedobacter bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:2592–2595 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang D.-C., Busse H.-J., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R. 2011; Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:587–591 [CrossRef][PubMed]
    [Google Scholar]
  37. Zhang D.-C., Redzic M., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R. 2012; Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia . Int J Syst Evol Microbiol 62:710–715 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037556-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037556-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error