1887

Abstract

A novel Gram-staining-negative, facultatively anaerobic, motile and rod-shaped bacterium, designated strain LHW37, was isolated from a dead ark clam collected on the south coast of Korea. The novel strain grew optimally at 37 °C, at pH 7.0–8.0 and with 2 % (w/v) NaCl. The predominant cellular fatty acids were Cω7 and summed feature 3 (Cω7 and/or iso-C 2-OH). The major isoprenoid quinone was ubiquinone-8 (Q-8) and the predominant polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain was most closely related to JAMM 0745 (97.1 % sequence similarity). The genomic DNA G+C content of strain LHW37 was 48.2 mol%. The DNA–DNA relatedness values recorded in hybridization experiments between the novel strain and its closest known relative were ≤18 %. Based on the phenotypic, genotypic and phylogenetic data, strain LHW37 represents a novel species belonging to the genus for which the name sp. nov. is proposed. The type strain is LHW37 ( = KACC 15543  = JCM 17730). An emended description of the genus is also provided.

Funding
This study was supported by the:
  • , National Institute of Biological Resources
  • , National Research Foundation of Korea , (Award 2011-0028854)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037473-0
2012-11-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2657.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037473-0&mimeType=html&fmt=ahah

References

  1. Bae J. W., Rhee S. K., Park J. R., Chung W. H., Nam Y. D., Lee I., Kim H., Park Y. H. 2005; Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835 [CrossRef][PubMed]
    [Google Scholar]
  2. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W. 2008; Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75:523–530 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D. 1981a; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354[PubMed]
    [Google Scholar]
  4. Collins M. D., Jones D. 1981b; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  5. Farcot J. M., Mercky F., Tritschler J. L., Schaeffer F. 1988; Percutaneous cervical chordotomy in primary or secondary chest cancer pains (apropos of 19 cases). Agressologie 29:87–89 (in French) [PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hedlund B. P., Geiselbrecht A. D., Bair T. J., Staley J. T. 1999; Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov.. Appl Environ Microbiol 65:251–259[PubMed]
    [Google Scholar]
  10. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C, Jeon Y. S., Lee J.-H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  13. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M. 2005; 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl Environ Microbiol 71:1373–1386 [CrossRef][PubMed]
    [Google Scholar]
  14. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Kubokawa K., Horikoshi K. 2008; Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:866–871 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  16. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  17. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  21. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  22. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang X. Y., Zhang Y. J., Yu Y., Li H. J., Gao Z. M., Chen X. L., Chen B., Zhang Y. Z. 2010; Neptunomonas antarctica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60:1958–1961 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037473-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037473-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error