1887

Abstract

A slow-growing non-chromogenic mycobacterium was isolated from a patient with pulmonary disease. Phenotypically, strain 05-1390 was similar to ATCC 13950. The 16S rRNA gene sequence (1385 bp) of strain 05-1390 showed a high degree of similarity to those of the complex, namely 5351974 (100 %), ATCC 13950 (99.8 %) and DSM 44623 (99.9 %). Phylogenetic analysis based on internal transcribed spacer 1 (ITS1) and the gene indicated that strain 05-1390 was closely related to ATCC 13950, but that it was a distinct phylogenetic entity. Of particular interest, an analysis based on the gene (701 bp) showed that it is closely related to ATCC BAA-614 (99.4 %), a scotochromogenic strain, rather than to the related strains. Unique MALDI-TOF MS profiles also supported the taxonomic status of this strain as a distinct species. These data support the conclusion that strain 05-1390 represents a novel mycobacterial species, for which the name sp. nov. is proposed; the type strain is 05-1390 ( = DSM 45126 = KCTC 19555).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037465-0
2013-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/192.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037465-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Colson P., Drancourt M.. ( 2003;). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. . J Clin Microbiol 41:, 5699–5708. [CrossRef][PubMed]
    [Google Scholar]
  2. Bai G. H., Park K. S., Kim S. J.. ( 1993;). Clinically isolated mycobacteria other than Mycobacterium tuberculosis from 1980 to 1990 in Korea. . J Korean Soc Microbiol 28:, 1–5.
    [Google Scholar]
  3. Bang D., Herlin T., Stegger M., Andersen A. B., Torkko P., Tortoli E., Thomsen V. O.. ( 2008;). Mycobacterium arosiense sp. nov., a slowly growing, scotochromogenic species causing osteomyelitis in an immunocompromised child. . Int J Syst Evol Microbiol 58:, 2398–2402. [CrossRef][PubMed]
    [Google Scholar]
  4. Ben Salah I., Adékambi T., Raoult D., Drancourt M.. ( 2008;). rpoB sequence-based identification of Mycobacterium avium complex species. . Microbiology 154:, 3715–3723. [CrossRef][PubMed]
    [Google Scholar]
  5. Ben Salah I., Cayrou C., Raoult D., Drancourt M.. ( 2009;). Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex. . Int J Syst Evol Microbiol 59:, 2803–2808. [CrossRef][PubMed]
    [Google Scholar]
  6. Crump J. A., van Ingen J., Morrissey A. B., Boeree M. J., Mavura D. R., Swai B., Thielman N. M., Bartlett J. A., Grossman H.. & other authors ( 2009;). Invasive disease caused by nontuberculous mycobacteria, Tanzania. . Emerg Infect Dis 15:, 53–55. [CrossRef][PubMed]
    [Google Scholar]
  7. Falkinham J. O. III. ( 1996;). Epidemiology of infection by nontuberculous mycobacteria. . Clin Microbiol Rev 9:, 177–215.[PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence-limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406. [CrossRef]
    [Google Scholar]
  10. Frothingham R., Wilson K. H.. ( 1993;). Sequence-based differentiation of strains in the Mycobacterium avium complex. . J Bacteriol 175:, 2818–2825.[PubMed]
    [Google Scholar]
  11. Inderlied C. B., Kemper C. A., Bermudez L. E.. ( 1993;). The Mycobacterium avium complex. . Clin Microbiol Rev 6:, 266–310.[PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  13. Kent P. T., Kubica G. P.. ( 1985;). Public Health Mycobacteriology: a Guide for the Level III Laboratory. Atlanta, GA:: Centers for Disease Control and Prevention;.
    [Google Scholar]
  14. Kim H., Ryoo S.. ( 2011;). Exploitation of culture medium for Mycobacterium tuberculosis. . J Bacteriol Virol 41:, 237–244. [CrossRef]
    [Google Scholar]
  15. Kim B. J., Lee S. H., Lyu M. A., Kim S. J., Bai G. H., Chae G. T., Kim E. C., Cha C. Y., Kook Y. H.. ( 1999;). Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). . J Clin Microbiol 37:, 1714–1720.[PubMed]
    [Google Scholar]
  16. Kim H., Kim S. H., Shim T. S., Kim M. N., Bai G. H., Park Y. G., Lee S. H., Chae G. T., Cha C. Y.. & other authors ( 2005;). Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). . Int J Syst Evol Microbiol 55:, 1649–1656. [CrossRef][PubMed]
    [Google Scholar]
  17. Koh W. J., Kwon O. J., Lee K. S.. ( 2005;). Diagnosis and treatment of nontuberculous mycobacterial pulmonary diseases: a Korean perspective. . J Korean Med Sci 20:, 913–925. [CrossRef][PubMed]
    [Google Scholar]
  18. Koh W. J., Kwon O. J., Jeon K., Kim T. S., Lee K. S., Park Y. K., Bai G. H.. ( 2006;). Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. . Chest 129:, 341–348. [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  20. McNabb A., Eisler D., Adie K., Amos M., Rodrigues M., Stephens G., Black W. A., Isaac-Renton J.. ( 2004;). Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. . J Clin Microbiol 42:, 3000–3011. [CrossRef][PubMed]
    [Google Scholar]
  21. Murcia M. I., Tortoli E., Menendez M. C., Palenque E., Garcia M. J.. ( 2006;). Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. . Int J Syst Evol Microbiol 56:, 2049–2054. [CrossRef][PubMed]
    [Google Scholar]
  22. Park J. H., Shim T. S., Lee S. A., Lee H., Lee I. K., Kim K., Kook Y. H., Kim B. J.. ( 2010;). Molecular characterization of Mycobacterium intracellulare-related strains based on the sequence analysis of hsp65, internal transcribed spacer and 16S rRNA genes. . J Med Microbiol 59:, 1037–1043. [CrossRef][PubMed]
    [Google Scholar]
  23. Pérez E., Constant P., Lemassu A., Laval F., Daffé M., Guilhot C.. ( 2004;). Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. . J Biol Chem 279:, 42574–42583. [CrossRef][PubMed]
    [Google Scholar]
  24. Rogall T., Flohr T., Böttger E. C.. ( 1990;). Differentiation of Mycobacterium species by direct sequencing of amplified DNA. . J Gen Microbiol 136:, 1915–1920. [CrossRef][PubMed]
    [Google Scholar]
  25. Roth A., Fischer M., Hamid M. E., Michalke S., Ludwig W., Mauch H.. ( 1998;). Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. . J Clin Microbiol 36:, 139–147.[PubMed]
    [Google Scholar]
  26. Ryoo S. W., Shin S., Shim M. S., Park Y. S., Lew W. J., Park S. N., Park Y. K., Kang S.. ( 2008;). Spread of nontuberculous mycobacteria from 1993 to 2006 in Koreans. . J Clin Lab Anal 22:, 415–420. [CrossRef][PubMed]
    [Google Scholar]
  27. Saini V., Raghuvanshi S., Talwar G. P., Ahmed N., Khurana J. P., Hasnain S. E., Tyagi A. K., Tyagi A. K.. ( 2009;). Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. . PLoS ONE 4:, e6263. [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Springer B., Stockman L., Teschner K., Roberts G. D., Böttger E. C.. ( 1996;). Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. . J Clin Microbiol 34:, 296–303.[PubMed]
    [Google Scholar]
  30. Tortoli E., Kroppenstedt R. M., Bartoloni A., Caroli G., Jan I., Pawlowski J., Emler S.. ( 1999;). Mycobacterium tusciae sp. nov.. Int J Syst Bacteriol 49:, 1839–1844. [CrossRef][PubMed]
    [Google Scholar]
  31. Tortoli E., Rindi L., Garcia M. J., Chiaradonna P., Dei R., Garzelli C., Kroppenstedt R. M., Lari N., Mattei R.. & other authors ( 2004;). Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov.. Int J Syst Evol Microbiol 54:, 1277–1285. [CrossRef][PubMed]
    [Google Scholar]
  32. Turenne C. Y., Wallace R. Jr, Behr M. A.. ( 2007;). Mycobacterium avium in the postgenomic era. . Clin Microbiol Rev 20:, 205–229. [CrossRef][PubMed]
    [Google Scholar]
  33. van Ingen J., Boeree M. J., Kösters K., Wieland A., Tortoli E., Dekhuijzen P. N., van Soolingen D.. ( 2009;). Proposal to elevate Mycobacterium avium complex ITS sequevar MAC-Q to Mycobacterium vulneris sp. nov.. Int J Syst Evol Microbiol 59:, 2277–2282. [CrossRef][PubMed]
    [Google Scholar]
  34. Yajko D. M., Chin D. P., Gonzalez P. C., Nassos P. S., Hopewell P. C., Reingold A. L., Horsburgh C. R. Jr, Yakrus M. A., Ostroff S. M., Hadley W. K.. ( 1995;). Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. . J Acquir Immune Defic Syndr Hum Retrovirol 9:, 176–182.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037465-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037465-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error