
Full text loading...
Two extremely halophilic archaea, strains MGY-184T and MGY-205, were isolated from sea salt produced in Japan and rock salt imported from Bolivia, respectively. Both strains were pleomorphic, non-motile, Gram-negative and required more than 5 % (w/v) NaCl for growth, with optimum at 9–12 %, in the presence of 2 % (w/v) MgCl2 . 6H2O. In the presence of 18 % (w/v) MgCl2 . 6H2O, however, both strains showed growth even at 1.0 % (w/v) NaCl. Both strains possessed two 16S rRNA genes (rrnA and rrnB), and they revealed closest similarity to Halobaculum gomorrense JCM 9908T, the single species with a validly published name of the genus Halobaculum , with similarity of 97.8 %. The rrnA and rrnB genes of both strains were 100 % similar. The rrnA genes were 97.6 % similar to the rrnB genes in both strains. DNA G+C contents of strains MGY-184T and MGY-205 were 67.0 and 67.4 mol%, respectively. Polar lipid analysis revealed that the two strains contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester derived from C20C20 archaeol. The DNA–DNA hybridization value between the two strains was 70 % and both strains showed low levels of DNA–DNA relatedness (48–50 %) with Halobaculum gomorrense JCM 9908T. Physiological and biochemical characteristics allowed differentiation of strains MGY-184T and MGY-205 from Halobaculum gomorrense JCM 9908T. Therefore, strains MGY-184T and MGY-205 represent a novel species of the genus Halobaculum , for which the name Halobaculum magnesiiphilum sp. nov. is proposed; the type strain is MGY-184T ( = JCM 17821T = KCTC 4100T).
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements