1887

Abstract

Two extremely halophilic archaea, strains MGY-184 and MGY-205, were isolated from sea salt produced in Japan and rock salt imported from Bolivia, respectively. Both strains were pleomorphic, non-motile, Gram-negative and required more than 5 % (w/v) NaCl for growth, with optimum at 9–12 %, in the presence of 2 % (w/v) MgCl . 6HO. In the presence of 18 % (w/v) MgCl . 6HO, however, both strains showed growth even at 1.0 % (w/v) NaCl. Both strains possessed two 16S rRNA genes ( and ), and they revealed closest similarity to JCM 9908, the single species with a validly published name of the genus , with similarity of 97.8 %. The and genes of both strains were 100 % similar. The genes were 97.6 % similar to the genes in both strains. DNA G+C contents of strains MGY-184 and MGY-205 were 67.0 and 67.4 mol%, respectively. Polar lipid analysis revealed that the two strains contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester derived from CC archaeol. The DNA–DNA hybridization value between the two strains was 70 % and both strains showed low levels of DNA–DNA relatedness (48–50 %) with JCM 9908. Physiological and biochemical characteristics allowed differentiation of strains MGY-184 and MGY-205 from JCM 9908. Therefore, strains MGY-184 and MGY-205 represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is MGY-184 ( = JCM 17821 = KCTC 4100).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037432-0
2013-03-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/861.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037432-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F. ( 1989 ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171, 49874991.[PubMed]
    [Google Scholar]
  2. Cohen S., Oren A., Shilo M. ( 1983 ). The divalent cation requirement of Dead Sea halobacteria. . Arch Microbiol 136, 184190. [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  5. Fukushima T., Usami R., Kamekura M. ( 2007 ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. . Saline Syst 3, 2. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) ( 1994 ). Methods for General and Molecular Bacteriology, pp. 227248. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Gonzalez C., Gutierrez C., Ramırez C. ( 1978 ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24, 710715. [CrossRef] [PubMed]
    [Google Scholar]
  8. Grant W. D. ( 2001 ). Genus I. Halobacterium Elazari-Volcani 1957, 207,AL emend. Larsen and Grant 1989, 2222. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 301305. Edited by Boone D. R., Castenholz R. W., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  9. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. ( 2001 ). Class III. Halobacteria class. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294301. Edited by Boone D. R., Castenholz R. W., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  10. Kamekura M. ( 1993 ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135161. Edited by Vreeland R. H., Hochstein L. I. . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  11. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007 ). clustal w and clustal_x version 2.0. . Bioinformatics 23, 29472948. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lipman D. J., Pearson W. R. ( 1985 ). Rapid and sensitive protein similarity searches. . Science 227, 14351441. [CrossRef] [PubMed]
    [Google Scholar]
  13. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R. ( 2010 ). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60, 25132516. [CrossRef] [PubMed]
    [Google Scholar]
  14. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [CrossRef]
    [Google Scholar]
  15. Miyazaki S., Sugawara H., Gojobori T., Tateno Y. ( 2003 ). DNA Data Bank of Japan (DDBJ) in XML. . Nucleic Acids Res 31, 1316. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mullakhanbhai M. F., Larsen H. ( 1975 ). Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. . Arch Microbiol 104, 207214. [CrossRef] [PubMed]
    [Google Scholar]
  17. Neev D., Emery K. O. ( 1967). The Dead Sea, Depositional Processes and Environments of Evaporites. Bulletin no. 41. Jerusalem:: State of Israel, Ministry of Development, Geological Survey;.
    [Google Scholar]
  18. Oren A. ( 1983 ). Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. . Int J Syst Bacteriol 33, 381386. [CrossRef]
    [Google Scholar]
  19. Oren A., Gurevich P., Gemmell R. T., Teske A. ( 1995 ). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. . Int J Syst Bacteriol 45, 747754. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oren A., Ventosa A., Grant W. D. ( 1997 ). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47, 233238. [CrossRef]
    [Google Scholar]
  21. Pearson W. R., Lipman D. J. ( 1988 ). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85, 24442448. [CrossRef] [PubMed]
    [Google Scholar]
  22. Purdy K. J., Cresswell-Maynard T. D., Nedwell D. B., McGenity T. J., Grant W. D., Timmis K. N., Embley T. M. ( 2004 ). Isolation of haloarchaea that grow at low salinities. . Environ Microbiol 6, 591595. [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. ( 2007 ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 57, 1924. [CrossRef] [PubMed]
    [Google Scholar]
  25. Savage K. N., Krumholz L. R., Oren A., Elshahed M. S. ( 2008 ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 58, 856860. [CrossRef] [PubMed]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  27. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. & other authors ( 2002 ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52, 10431047. [CrossRef] [PubMed]
    [Google Scholar]
  28. Stamatakis A., Ludwig T., Meier H. ( 2005 ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21, 456463. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 21, 125128. [CrossRef]
    [Google Scholar]
  30. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. ( 1986 ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov.. Syst Appl Microbiol 8, 8999. [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037432-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037432-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error