1887

Abstract

Two extremely halophilic archaea, strains MGY-184 and MGY-205, were isolated from sea salt produced in Japan and rock salt imported from Bolivia, respectively. Both strains were pleomorphic, non-motile, Gram-negative and required more than 5 % (w/v) NaCl for growth, with optimum at 9–12 %, in the presence of 2 % (w/v) MgCl . 6HO. In the presence of 18 % (w/v) MgCl . 6HO, however, both strains showed growth even at 1.0 % (w/v) NaCl. Both strains possessed two 16S rRNA genes ( and ), and they revealed closest similarity to JCM 9908, the single species with a validly published name of the genus , with similarity of 97.8 %. The and genes of both strains were 100 % similar. The genes were 97.6 % similar to the genes in both strains. DNA G+C contents of strains MGY-184 and MGY-205 were 67.0 and 67.4 mol%, respectively. Polar lipid analysis revealed that the two strains contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester derived from CC archaeol. The DNA–DNA hybridization value between the two strains was 70 % and both strains showed low levels of DNA–DNA relatedness (48–50 %) with JCM 9908. Physiological and biochemical characteristics allowed differentiation of strains MGY-184 and MGY-205 from JCM 9908. Therefore, strains MGY-184 and MGY-205 represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is MGY-184 ( = JCM 17821 = KCTC 4100).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037432-0
2013-03-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/861.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037432-0&mimeType=html&fmt=ahah

References

  1. Cline S. W. , Schalkwyk L. C. , Doolittle W. F. . ( 1989; ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Cohen S. , Oren A. , Shilo M. . ( 1983; ). The divalent cation requirement of Dead Sea halobacteria. . Arch Microbiol 136:, 184–190. [CrossRef]
    [Google Scholar]
  3. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fukushima T. , Usami R. , Kamekura M. . ( 2007; ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. . Saline Syst 3:, 2. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology, pp. 227–248. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Gonzalez C. , Gutierrez C. , Ramırez C. . ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  8. Grant W. D. . ( 2001; ). Genus I. Halobacterium Elazari-Volcani 1957, 207,AL emend. Larsen and Grant 1989, 2222. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 301–305. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  9. Grant W. D. , Kamekura M. , McGenity T. J. , Ventosa A. . ( 2001; ). Class III. Halobacteria class. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294–301. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  10. Kamekura M. . ( 1993; ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H. , Hochstein L. I. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  11. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. . & other authors ( 2007; ). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lipman D. J. , Pearson W. R. . ( 1985; ). Rapid and sensitive protein similarity searches. . Science 227:, 1435–1441. [CrossRef] [PubMed]
    [Google Scholar]
  13. Minegishi H. , Echigo A. , Nagaoka S. , Kamekura M. , Usami R. . ( 2010; ). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef] [PubMed]
    [Google Scholar]
  14. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. Miyazaki S. , Sugawara H. , Gojobori T. , Tateno Y. . ( 2003; ). DNA Data Bank of Japan (DDBJ) in XML. . Nucleic Acids Res 31:, 13–16. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mullakhanbhai M. F. , Larsen H. . ( 1975; ). Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. . Arch Microbiol 104:, 207–214. [CrossRef] [PubMed]
    [Google Scholar]
  17. Neev D. , Emery K. O. . ( 1967;). The Dead Sea, Depositional Processes and Environments of Evaporites. Bulletin no. 41. Jerusalem:: State of Israel, Ministry of Development, Geological Survey;.
    [Google Scholar]
  18. Oren A. . ( 1983; ). Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. . Int J Syst Bacteriol 33:, 381–386. [CrossRef]
    [Google Scholar]
  19. Oren A. , Gurevich P. , Gemmell R. T. , Teske A. . ( 1995; ). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. . Int J Syst Bacteriol 45:, 747–754. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oren A. , Ventosa A. , Grant W. D. . ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  21. Pearson W. R. , Lipman D. J. . ( 1988; ). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85:, 2444–2448. [CrossRef] [PubMed]
    [Google Scholar]
  22. Purdy K. J. , Cresswell-Maynard T. D. , Nedwell D. B. , McGenity T. J. , Grant W. D. , Timmis K. N. , Embley T. M. . ( 2004; ). Isolation of haloarchaea that grow at low salinities. . Environ Microbiol 6:, 591–595. [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Savage K. N. , Krumholz L. R. , Oren A. , Elshahed M. S. . ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 57:, 19–24. [CrossRef] [PubMed]
    [Google Scholar]
  25. Savage K. N. , Krumholz L. R. , Oren A. , Elshahed M. S. . ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. . Int J Syst Evol Microbiol 58:, 856–860. [CrossRef] [PubMed]
    [Google Scholar]
  26. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  27. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  28. Stamatakis A. , Ludwig T. , Meier H. . ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 21, 125–128.[CrossRef]
    [Google Scholar]
  30. Torreblanca M. , Rodriguez-Valera F. , Juez G. , Ventosa A. , Kamekura M. , Kates M. . ( 1986; ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov.. Syst Appl Microbiol 8:, 89–99. [CrossRef]
    [Google Scholar]
  31. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037432-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037432-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error