1887

Abstract

Four strains, designated JPY-345, JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of , and , that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15–43 °C (optimum 35 °C), at pH 4–7 (optimum pH 5) and with 0–2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345 showed 97.3 % sequence similarity to the closest related species GP25-8, 97.3 % sequence similarity to ATCC25418 and 97.1 % sequence similarity to KP23. The predominant fatty acids of the strains were Cω7 (36.1 %), C (19.8 %) and summed feature 3, comprising Cω7 and/or Cω6 (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2–65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA–DNA hybridizations between the novel strain and recognized species of the genus yielded relatedness values of <51.8 %. On the basis of 16S rRNA and gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JPY-345 ( = LMG 26032  = BCRC 80258  = KCTC 23309).

Funding
This study was supported by the:
  • National Science Council, Taipei, Taiwan, Republic of China (Award NSC 96-2313-B-022-001-MY3)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037408-0
2012-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2272.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037408-0&mimeType=html&fmt=ahah

References

  1. Ballard R. W., Palleroni N. J., Doudoroff M., Stanier R. Y., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli . J Gen Microbiol 60:199–214[PubMed] [CrossRef]
    [Google Scholar]
  2. Barrett C. F., Parker M. A. 2005; Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28:57–65 [View Article][PubMed]
    [Google Scholar]
  3. Barrett C. F., Parker M. A. 2006; Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72:1198–1206 [View Article][PubMed]
    [Google Scholar]
  4. Bontemps C., Elliott G. N., Simon M. F., Dos Reis Júnior F. B., Gross E., Lawton R. C., Neto N. E., de Fátima Loureiro M., De Faria S. M. other authors 2010; Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52 [View Article][PubMed]
    [Google Scholar]
  5. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  6. Chen W. M., James E. K., Prescott A. R., Kierans M., Sprent J. I. 2003; Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis . Mol Plant Microbe Interact 16:1051–1061 [View Article][PubMed]
    [Google Scholar]
  7. Chen W. M., de Faria S. M., Straliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R. other authors 2005a; Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471 [View Article][PubMed]
    [Google Scholar]
  8. Chen W. M., James E. K., Chou J. H., Sheu S. Y., Yang S. Z., Sprent J. I. 2005b; β-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol 168:661–675 [View Article][PubMed]
    [Google Scholar]
  9. Chen W. M., James E. K., Coenye T., Chou J. H., Barrios E., de Faria S. M., Elliott G. N., Sheu S. Y., Sprent J. I., Vandamme P. 2006; Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851 [View Article][PubMed]
    [Google Scholar]
  10. Chen W. M., de Faria S. M., James E. K., Elliott G. N., Lin K. Y., Chou J. H., Sheu S. Y., Cnockaert M., Sprent J. I., Vandamme P. 2007; Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella . Int J Syst Evol Microbiol 57:1055–1059 [View Article][PubMed]
    [Google Scholar]
  11. Chen W. M., de Faria S. M., Chou J. H., James E. K., Elliott G. N., Sprent J. I., Bontemps C., Young J. P. W., Vandamme P. 2008; Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia . Int J Syst Evol Microbiol 58:2174–2179 [View Article][PubMed]
    [Google Scholar]
  12. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  13. Collins M. D. 1985; Isoprenoid quinine analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  14. dos Reis F. B. Jr, Simon M. F., Gross E., Boddey R. M., Elliott G. N., Neto N. E., Loureiro M. F., de Queiroz L. P., Scotti M. R. other authors 2010; Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946 [View Article][PubMed]
    [Google Scholar]
  15. Elliott G. N., Chen W. M., Bontemps C., Chou J. H., Young J. P. W., Sprent J. I., James E. K. 2007a; Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum . Ann Bot (Lond) 100:1403–1411 [View Article][PubMed]
    [Google Scholar]
  16. Elliott G. N., Chen W. M., Chou J. H., Wang H. C., Sheu S. Y., Perin L., Reis V. M., Moulin L., Simon M. F. other authors 2007b; Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta . New Phytol 173:168–180 [View Article][PubMed]
    [Google Scholar]
  17. Embley T. M., Wait R. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp. 121–161 Edited by Goodfellow M., O’Donnell A. G. Chichester: John Wiley & Sons Ltd;
    [Google Scholar]
  18. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  19. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  21. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. Jr other authors 2011; Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288 [View Article][PubMed]
    [Google Scholar]
  22. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  23. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  24. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  25. Liu X. Y., Wu W., Wang E. T., Zhang B., Macdermott J., Chen W. X. 2011; Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. Int J Syst Evol Microbiol 61:334–342 [View Article][PubMed]
    [Google Scholar]
  26. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  28. Miller P. H., Wiggs L. S., Miller J. M. 1995; Evaluation of AnaeroGen system for growth of anaerobic bacteria. J Clin Microbiol 33:2388–2391[PubMed]
    [Google Scholar]
  29. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  31. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  32. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Vincent J. M. 1970 A Manual for the Practical Study of the Root-Nodule Bacteria Oxford: Blackwell Scientific;
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  37. Yoo S.-H., Kim B.-Y., Weon H.-Y., Kwon S.-W., Go S.-J., Stackebrandt E. 2007; Burkholderia soli sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 57:122–125 [View Article][PubMed]
    [Google Scholar]
  38. Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. 2000; Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037408-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037408-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error