1887

Abstract

Four strains, designated JPY-345, JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of , and , that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15–43 °C (optimum 35 °C), at pH 4–7 (optimum pH 5) and with 0–2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345 showed 97.3 % sequence similarity to the closest related species GP25-8, 97.3 % sequence similarity to ATCC25418 and 97.1 % sequence similarity to KP23. The predominant fatty acids of the strains were Cω7 (36.1 %), C (19.8 %) and summed feature 3, comprising Cω7 and/or Cω6 (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2–65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA–DNA hybridizations between the novel strain and recognized species of the genus yielded relatedness values of <51.8 %. On the basis of 16S rRNA and gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JPY-345 ( = LMG 26032  = BCRC 80258  = KCTC 23309).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037408-0
2012-09-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2272.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037408-0&mimeType=html&fmt=ahah

References

  1. Ballard R. W. , Palleroni N. J. , Doudoroff M. , Stanier R. Y. , Mandel M. . ( 1970; ). Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli . . J Gen Microbiol 60:, 199–214.[PubMed] [CrossRef]
    [Google Scholar]
  2. Barrett C. F. , Parker M. A. . ( 2005; ). Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. . Syst Appl Microbiol 28:, 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrett C. F. , Parker M. A. . ( 2006; ). Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. . Appl Environ Microbiol 72:, 1198–1206. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bontemps C. , Elliott G. N. , Simon M. F. , Dos Reis Júnior F. B. , Gross E. , Lawton R. C. , Neto N. E. , de Fátima Loureiro M. , De Faria S. M. . & other authors ( 2010; ). Burkholderia species are ancient symbionts of legumes. . Mol Ecol 19:, 44–52. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen W. M. , James E. K. , Prescott A. R. , Kierans M. , Sprent J. I. . ( 2003; ). Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis . . Mol Plant Microbe Interact 16:, 1051–1061. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen W. M. , de Faria S. M. , Straliotto R. , Pitard R. M. , Simões-Araùjo J. L. , Chou J. H. , Chou Y. J. , Barrios E. , Prescott A. R. . & other authors ( 2005a; ). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. . Appl Environ Microbiol 71:, 7461–7471. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen W. M. , James E. K. , Chou J. H. , Sheu S. Y. , Yang S. Z. , Sprent J. I. . ( 2005b; ). β-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. . New Phytol 168:, 661–675. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W. M. , James E. K. , Coenye T. , Chou J. H. , Barrios E. , de Faria S. M. , Elliott G. N. , Sheu S. Y. , Sprent J. I. , Vandamme P. . ( 2006; ). Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. . Int J Syst Evol Microbiol 56:, 1847–1851. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen W. M. , de Faria S. M. , James E. K. , Elliott G. N. , Lin K. Y. , Chou J. H. , Sheu S. Y. , Cnockaert M. , Sprent J. I. , Vandamme P. . ( 2007; ). Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella . . Int J Syst Evol Microbiol 57:, 1055–1059. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen W. M. , de Faria S. M. , Chou J. H. , James E. K. , Elliott G. N. , Sprent J. I. , Bontemps C. , Young J. P. W. , Vandamme P. . ( 2008; ). Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia . . Int J Syst Evol Microbiol 58:, 2174–2179. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  13. Collins M. D. . ( 1985; ). Isoprenoid quinine analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  14. dos Reis F. B. Jr , Simon M. F. , Gross E. , Boddey R. M. , Elliott G. N. , Neto N. E. , Loureiro M. F. , de Queiroz L. P. , Scotti M. R. . & other authors ( 2010; ). Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. . New Phytol 186:, 934–946. [CrossRef] [PubMed]
    [Google Scholar]
  15. Elliott G. N. , Chen W. M. , Bontemps C. , Chou J. H. , Young J. P. W. , Sprent J. I. , James E. K. . ( 2007a; ). Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum . . Ann Bot (Lond) 100:, 1403–1411. [CrossRef] [PubMed]
    [Google Scholar]
  16. Elliott G. N. , Chen W. M. , Chou J. H. , Wang H. C. , Sheu S. Y. , Perin L. , Reis V. M. , Moulin L. , Simon M. F. . & other authors ( 2007b; ). Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta . . New Phytol 173:, 168–180. [CrossRef] [PubMed]
    [Google Scholar]
  17. Embley T. M. , Wait R. . ( 1994; ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O’Donnell A. G. . . Chichester:: John Wiley & Sons Ltd;.
    [Google Scholar]
  18. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  19. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. . ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  21. Gyaneshwar P. , Hirsch A. M. , Moulin L. , Chen W. M. , Elliott G. N. , Bontemps C. , Estrada-de Los Santos P. , Gross E. , Dos Reis F. B. Jr . & other authors ( 2011; ). Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. . Mol Plant Microbe Interact 24:, 1276–1288. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  23. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  24. Kluge A. G. , Farris J. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  25. Liu X. Y. , Wu W. , Wang E. T. , Zhang B. , Macdermott J. , Chen W. X. . ( 2011; ). Phylogenetic relationships and diversity of β-rhizobia associated with Mimosa species grown in Sishuangbanna, China. . Int J Syst Evol Microbiol 61:, 334–342. [CrossRef] [PubMed]
    [Google Scholar]
  26. Maidak B. L. , Cole J. R. , Lilburn T. G. , Parker C. T. Jr , Saxman P. R. , Farris R. J. , Garrity G. M. , Olsen G. J. , Schmidt T. M. , Tiedje J. M. . ( 2001; ). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Miller P. H. , Wiggs L. S. , Miller J. M. . ( 1995; ). Evaluation of AnaeroGen system for growth of anaerobic bacteria. . J Clin Microbiol 33:, 2388–2391.[PubMed]
    [Google Scholar]
  29. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  32. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vincent J. M. . ( 1970; ). A Manual for the Practical Study of the Root-Nodule Bacteria. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  36. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  37. Yoo S.-H. , Kim B.-Y. , Weon H.-Y. , Kwon S.-W. , Go S.-J. , Stackebrandt E. . ( 2007; ). Burkholderia soli sp. nov., isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 57:, 122–125. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zhang H. , Hanada S. , Shigematsu T. , Shibuya K. , Kamagata Y. , Kanagawa T. , Kurane R. . ( 2000; ). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. . Int J Syst Evol Microbiol 50:, 743–749. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037408-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037408-0
Loading

Data & Media loading...

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error