1887

Abstract

A yellow-pigmented, Gram-reaction-negative, non-motile, aerobic bacterium, designated DR4-30, was isolated from tundra soil near Ny-Ålesund, Svalbard Archipelago, Norway (78° 58′ N 12° 03′ E). Growth occurred at 4–28 °C (optimum 20–25 °C) and at pH 7–8 (optimum pH 7). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DR4-30 belongs to the genus in the family . The 16S rRNA gene sequence of this strain showed 95.4 and 94.7 % sequence similarity to those of A4T-83 and A5J-41-2, respectively. The major respiratory quinones were MK-9 and MK-10; the predominant cellular fatty acids were summed feature 3 (Cω7 and/or Cω6; 20.7 %), iso-C (20.3 %), C (10.7 %), C (8.0 %) and C (6.6 %). The DNA G+C content was 57.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain DR4-30 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DR4-30 ( = CCTCC AB 2010415  = NRRL B-59669). An emended description of the genus is also provided.

Funding
This study was supported by the:
  • R & D Infrastructure and Facility Development Program
  • Ministry of Science and Technology of the People’s Republic of China (Award 2005DKA21208)
  • State Oceanic Administration, P. R. China (Award 10/11YR06)
  • National Basic Research Program of China (Award 2011CB808800)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037309-0
2012-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2259.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037309-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  4. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  7. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  8. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704 [View Article][PubMed]
    [Google Scholar]
  9. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–147 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  10. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004; Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54:1669–1676 [View Article][PubMed]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  12. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  14. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  16. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  17. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  18. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  20. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  21. Yoon J., Matsuo Y., Adachi K., Nozawa M., Matsuda S., Kasai H., Yokota A. 2008; Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum ‘Verrucomicrobia’, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae . Int J Syst Evol Microbiol 58:998–1007 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037309-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037309-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error