1887

Abstract

Several intermediate-growing, photochromogenic bacteria were isolated from sphagnum peat bogs in northern Minnesota, USA. Acid-fast staining and 16S rRNA gene sequence analysis placed these environmental isolates in the genus , and colony morphologies and PCR restriction analysis patterns of the isolates were similar. Partial sequences of and from these isolates showed that ATCC BAA-1242 was the closest mycobacterial relative, and common biochemical characteristics and antibiotic susceptibilities existed between the isolates and ATCC BAA-1242. However, compared to nonchromogenic ATCC BAA-1242, the environmental isolates were photochromogenic, had a different mycolic acid profile and had reduced cell-surface hydrophobicity in liquid culture. The data reported here support the conclusion that the isolates are representatives of a novel mycobacterial species, for which the name sp. nov. is proposed. The type strain is DL49 ( = DSM 45633 = JCM 17932 = NCCB 100399).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037291-0
2013-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/124.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037291-0&mimeType=html&fmt=ahah

References

  1. Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . ( 2007; ). Methods for General and Molecular Microbiology, , 3rd edn.. Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  2. Cassidy P. M. , Hedberg K. , Saulson A. , McNelly E. , Winthrop K. L . . ( 2009; ). Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. . Clin Infect Dis 49:, e124–e129. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chilima B. Z. , Clark I. M. , Floyd S. , Fine P. E. M. , Hirsch P. R . . ( 2006; ). Distribution of environmental mycobacteria in Karonga District, northern Malawi. . Appl Environ Microbiol 72:, 2343–2350. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cloud J. L. , Meyer J. J. , Pounder J. I. , Jost K. C. Jr , Sweeney A. , Carroll K. C. , Woods G. L . . ( 2006; ). Mycobacterium arupense sp. nov., a non-chromogenic bacterium isolated from clinical specimens. . Int J Syst Evol Microbiol 56:, 1413–1418. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cook J. L . . ( 2010; ). Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts. . Br Med Bull 96:, 45–59. [CrossRef] [PubMed]
    [Google Scholar]
  6. Durnez L. , Eddyani M. , Mgode G. F. , Katakweba A. , Katholi C. R. , Machang’u R. R. , Kazwala R. R. , Portaels F. , Leirs H . . ( 2008; ). First detection of mycobacteria in African rodents and insectivores, using stratified pool screening. . Appl Environ Microbiol 74:, 768–773. [CrossRef] [PubMed]
    [Google Scholar]
  7. Falkinham J. O. III . ( 2009; ). Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. . J Appl Microbiol 107:, 356–367. [CrossRef] [PubMed]
    [Google Scholar]
  8. Falkinham J. O . . ( 2010; ). Impact of human activities on the ecology of nontuberculous mycobacteria. . Future Microbiol 5:, 951–960. [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein J . . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Kazda J . . ( 2000; ). The Ecology of Mycobacteria. The Netherlands:: Kluwer Academic Publishers;. [CrossRef]
    [Google Scholar]
  11. Kimura M . . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  12. Leao S. C. , Martin A. , Mejia G. I. , Palomino J. C. , Robledo J. , Telles M. A. S. , Portaels F . . ( 2004; ). Practical Handbook for the Phenotypic and Genotypic Identification of Mycobacteria. Bruges, Belgium:: Vanden Broelle;.
    [Google Scholar]
  13. Lee E. S. , Lee M. Y. , Han S. H. , Ka J. O . . ( 2008; ). Occurrence and molecular differentiation of environmental mycobacteria in surface waters. . J Microbiol Biotechnol 18:, 1207–1215.[PubMed]
    [Google Scholar]
  14. Martin E. , Kämpfer P. , Jäckel U . . ( 2010; ). Quantification and identification of culturable airborne bacteria from duck houses. . Ann Occup Hyg 54:, 217–227. [CrossRef] [PubMed]
    [Google Scholar]
  15. Masaki T. , Ohkusu K. , Hata H. , Fujiwara N. , Iihara H. , Yamada-Noda M. , Nhung P. H. , Hayashi M. , Asano Y. et al. ( 2006; ). Mycobacterium kumamotonense sp. nov. recovered from clinical specimen and the first isolation report of Mycobacterium arupense in Japan: novel slowly growing, nonchromogenic clinical isolates related to Mycobacterium terrae complex. . Microbiol Immunol 50:, 889–897.[PubMed] [CrossRef]
    [Google Scholar]
  16. Mendum T. A. , Chilima B. Z. , Hirsch P. R . . ( 2000; ). The PCR amplification of non-tuberculous mycobacterial 16S rRNA sequences from soil. . FEMS Microbiol Lett 185:, 189–192. [CrossRef] [PubMed]
    [Google Scholar]
  17. Neonakis I. K. , Gitti Z. , Kontos F. , Baritaki S. , Petinaki E. , Baritaki M. , Liakou V. , Zerva L. , Spandidos D. A . . ( 2010; ). Mycobacterium arupense pulmonary infection: antibiotic resistance and restriction fragment length polymorphism analysis. . Indian J Med Microbiol 28:, 173–176. [CrossRef] [PubMed]
    [Google Scholar]
  18. Pauls R. J. , Turenne C. Y. , Wolfe J. N. , Kabani A . . ( 2003; ). A high proportion of novel mycobacteria species identified by 16S rDNA analysis among slowly growing AccuProbe-negative strains in a clinical setting. . Am J Clin Pathol 120:, 560–566. [CrossRef] [PubMed]
    [Google Scholar]
  19. Radomski N. , Cambau E. , Moulin L. , Haenn S. , Moilleron R. , Lucas F. S . . ( 2010; ). Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. . Appl Environ Microbiol 76:, 3514–3520. [CrossRef] [PubMed]
    [Google Scholar]
  20. Saitou N. , Nei M . . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Slany M. , Svobodova J. , Ettlova A. , Slana I. , Mrlik V. , Pavlik I . . ( 2010; ). Mycobacterium arupense among the isolates of non-tuberculous mycobacteria from human, animal, and environmental samples. . Vet Med (Praha) 55:, 369–376.
    [Google Scholar]
  22. Tamura K. , Dudley J. , Nei M. , Kumar S . . ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  23. Telenti A. , Marchesi F. , Balz M. , Bally F. , Böttger E. C. , Bodmer T . . ( 1993; ). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. . J Clin Microbiol 31:, 175–178.[PubMed]
    [Google Scholar]
  24. Tierno P. M. Jr , Milstoc M . . ( 1981; ). Combined modified heat-stable acid phosphatase and 68°C catalase test for differentiation of mycobacteria. . J Clin Microbiol 13:, 998–999.[PubMed]
    [Google Scholar]
  25. Vaneechoutte M. , De Beenhouwer H. , Claeys G. , Verschraegen G. , De Rouck A. , Paepe N. , Elaichouni A. , Portaels F . . ( 1993; ). Identification of Mycobacterium species by using amplified ribosomal DNA restriction analysis. . J Clin Microbiol 31:, 2061–2065.[PubMed]
    [Google Scholar]
  26. Yamada-Noda M. , Ohkusu K. , Hata H. , Shah M. M. , Nhung P. H. , Sun X. S. , Hayashi M. , Ezaki T . . ( 2007; ). Mycobacterium species identification – a new approach via dnaJ gene sequencing. . Syst Appl Microbiol 30:, 453–462. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037291-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037291-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error