sp. nov., isolated from the ark clam Free

Abstract

A slightly halophilic, Gram-negative, strictly aerobic, non-motile rod, designated TW15, was isolated from an ark clam in South Korea. Growth occurred at 10–37 °C, with 1–5 % (w/v) NaCl and at pH 7.0–10.0. Optimal growth occurred at 25–30 °C, with 2 % (w/v) NaCl and at pH 8.0. Strain TW15 exhibited both oxidase and catalase activities. The major fatty acids of strain TW15 were summed feature 8 (consisting of Cω7 and/or Cω6) and 11-methyl Cω7. The predominant isoprenoid quinone was ubiquinone-10 (Q-10). The polar lipids of strain TW15 comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and five unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TW15 was most closely related to DSM 11314 (98.0 % 16S rRNA gene sequence similarity). DNA–DNA relatedness with closely related strains was <52±3 %. The DNA G+C content was 55.7 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain TW15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TW15 ( = KACC 15115  = JCM 17315).

Funding
This study was supported by the:
  • National Institute of Biological Resources (NIBR)
  • National Fisheries Research and Development Institute (NFRDI)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037283-0
2012-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/2851.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037283-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Macián M. C., Garay E., Pujalte M. J. 2005; Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov.. Int J Syst Evol Microbiol 55:2371–2376 [View Article][PubMed]
    [Google Scholar]
  2. Bae J.-W., Rhee S.-K., Park J. R., Chung W.-H., Nam Y.-D., Lee I., Kim H., Park Y.-H. 2005; Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71:8825–8835 [View Article][PubMed]
    [Google Scholar]
  3. Chang H.-W., Nam Y.-D., Jung M. Y., Kim K.-H., Roh S. W., Kim M.-S., Jeon C. O., Yoon J.-H., Bae J.-W. 2008; Statistical superiority of genome-probing microarrays as genomic DNA–DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75:523–530 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  6. González J. M., Covert J. S., Whitman W. B., Henriksen J. R., Mayer F., Scharf B., Schmitt R., Buchan A., Fuhrman J. A. other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269 [View Article][PubMed]
    [Google Scholar]
  7. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  8. Huo Y.-Y., Xu X.-W., Li X., Liu C., Cui H.-L., Wang C.-S., Wu M. 2011; Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 61:347–350 [View Article][PubMed]
    [Google Scholar]
  9. Kim Y.-O., Park S., Nam B.-H., Kang S.-J., Hur Y. B., Lee S.-J., Oh T.-K., Yoon J.-H. 2012; Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi . Int J Syst Evol Microbiol 62:925–930 [View Article][PubMed]
    [Google Scholar]
  10. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  11. Lai Q., Yuan J., Li F., Zheng T., Shao Z. 2010; Ruegeria pelagia is a later heterotypic synonym of Ruegeria mobilis . Int J Syst Evol Microbiol 60:1918–1920 [View Article][PubMed]
    [Google Scholar]
  12. Lee K., Choo Y.-J., Giovannoni S. J., Cho J.-C. 2007; Ruegeria pelagia sp. nov., isolated from the Sargasso Sea, Atlantic Ocean. Int J Syst Evol Microbiol 57:1815–1818 [View Article][PubMed]
    [Google Scholar]
  13. Lee J., Roh S. W., Whon T. W., Shin N.-R., Kim Y.-O., Bae J.-W. 2011; Genome sequence of strain TW15, a novel member of the genus Ruegeria, belonging to the marine Roseobacter clade. J Bacteriol 193:3401–3402 [View Article][PubMed]
    [Google Scholar]
  14. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T. 2006; Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera . Int J Syst Evol Microbiol 56:1293–1304 [View Article][PubMed]
    [Google Scholar]
  15. MIDI 1999 Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  16. Muramatsu Y., Uchino Y., Kasai H., Suzuki K., Nakagawa Y. 2007; Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 57:1304–1309 [View Article][PubMed]
    [Google Scholar]
  17. Oh K.-H., Jung Y.-T., Oh T.-K., Yoon J.-H. 2011; Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 61:1182–1188 [View Article][PubMed]
    [Google Scholar]
  18. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [View Article][PubMed]
    [Google Scholar]
  19. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 79:59–65[PubMed] [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  24. Tittsler R. P., Sandholzer L. A. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580[PubMed]
    [Google Scholar]
  25. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.. J Gen Appl Microbiol 44:201–210 [View Article][PubMed]
    [Google Scholar]
  26. Vandecandelaere I., Nercessian O., Segaert E., Achouak W., Faimali M., Vandamme P. 2008; Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 58:2726–2733 [View Article][PubMed]
    [Google Scholar]
  27. Ventosa A., Nieto J. J. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94 [View Article]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  29. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. 2000; Natrinema versiforme sp. nov., an extremely halophilicarchaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303 [View Article][PubMed]
    [Google Scholar]
  30. Yi H., Lim Y. W., Chun J. 2007; Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57:815–819 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037283-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037283-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed