1887

Abstract

Two Gram-stain-positive, non-endospore-forming actinobacteria (Ca8and Ca14) were isolated from a bioreactor with extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strains Ca8 and Ca14 were shown to belong to the genus and were most closely related to DSM 44140 (98.0 % sequence similarity) and DSM 44015 (97.2 %). In comparison with the sequences of the type strains of all other species of the genus tested, similarities were below 97 %. The quinone systems of the strains were determined to consist predominantly of MK-9H. The polar lipid profile for both organisms consisted of diphosphatidylglycerol, phosphatidylglycerol, phospatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Whole-organism hydrolysates contained -diaminopimelic acid as the diamino acid of the peptidoglycan; mycolic acids were detected as well. These chemotaxonomic traits and the major fatty acids, which were C -9, C and C and tuberculostearic acid strongly supported the grouping of strains Ca8 and Ca14 into the genus . The two strains showed a DNA–DNA similarity of 96 %. DNA–DNA hybridizations of strain Ca8 with DSM 44140 and DSM 44015 resulted in values of 26.3 and 25.0 %, respectively. These results and those of the physiological and biochemical tests allowed a clear phenotypic differentiation of strains Ca8 and Ca14 from the most closely related species of the genus . It is concluded that strains Ca8 and Ca14 represent a novel species, for which the name Gordonia sp. nov. is proposed, with the type strain Ca8 ( = DSM 45630 = CCUG 61533 = CCM 7957 = LMG 26648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.037093-0
2013-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/230.html?itemId=/content/journal/ijsem/10.1099/ijs.0.037093-0&mimeType=html&fmt=ahah

References

  1. Becker B. , Lechevalier M. P. , Lechevalier H. A. . ( 1965; ). Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. . Appl Microbiol 13:, 236–243.[PubMed]
    [Google Scholar]
  2. Bendinger B. , Rainey F. A. , Kroppenstedt R. M. , Moormann M. , Klatte S. . ( 1995; ). Gordona hydrophobica sp. nov., isolated from biofilters for waste gas treatment. . Int J Syst Bacteriol 45:, 544–548. [CrossRef]
    [Google Scholar]
  3. Brandão P. F. B. , Maldonado L. A. , Ward A. C. , Bull A. T. , Goodfellow M. . ( 2001; ). Gordonia namibiensis sp. nov., a novel nitrile metabolising actinomycete recovered from an African sand. . Syst Appl Microbiol 24:, 510–515. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  6. Collins M. D. , Goodfellow M. , Minnikin D. E. . ( 1979; ). Isoprenoid quinones in the classification of coryneform and related bacteria. . J Gen Microbiol 110:, 127–136. [CrossRef] [PubMed]
    [Google Scholar]
  7. Drzyzga O. , Navarro Llorens J. M. , Fernández de Las Heras L. , García Fernández E. , Perera J. . ( 2009; ). Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. . Int J Syst Evol Microbiol 59:, 1011–1015. [CrossRef] [PubMed]
    [Google Scholar]
  8. Goodfellow M. , Alderson G. , Chun J. . ( 1998; ). Rhodococcal systematics: problems and developments. . Antonie van Leeuwenhoek 74:, 3–20. [CrossRef]
    [Google Scholar]
  9. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  11. Iida S. , Taniguchi H. , Kageyama A. , Yazawa K. , Chibana H. , Murata S. , Nomura F. , Kroppenstedt R. M. , Mikami Y. . ( 2005; ). Gordonia otitidis sp. nov., isolated from a patient with external otitis. . Int J Syst Evol Microbiol 55:, 1871–1876. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kageyama A. , Iida S. , Yazawa K. , Kudo T. , Suzuki S. , Koga T. , Saito H. , Inagawa H. , Wada A. . & other authors ( 2006; ). Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. . Int J Syst Evol Microbiol 56:, 1817–1821. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  14. Kämpfer P. , Kroppenstedt R. M. . ( 2004; ). Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:, 749–751. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kämpfer P. , Steiof M. , Dott W. . ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  16. Kämpfer P. , Young C. C. , Chu J. N. , Frischmann A. , Busse H. J. , Arun A. B. , Shen F. T. , Rekha P. D. . ( 2011; ). Gordonia humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 65–70. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim S. B. , Brown R. , Oldfield C. , Gilbert S. C. , Goodfellow M. . ( 1999; ). Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. . Int J Syst Bacteriol 49:, 1845–1851. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim S. B. , Brown R. , Oldfield C. , Gilbert S. C. , Iliarionov S. , Goodfellow M. . ( 2000; ). Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. . Int J Syst Evol Microbiol 50:, 2031–2036. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim K. K. , Lee C. S. , Kroppenstedt R. M. , Stackebrandt E. , Lee S. T. . ( 2003; ). Gordonia sihwensis sp. nov., a novel nitrate-reducing bacterium isolated from a wastewater-treatment bioreactor. . Int J Syst Evol Microbiol 53:, 1427–1433. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim K. K. , Lee K. C. , Klenk H. P. , Oh H. M. , Lee J. S. . ( 2009; ). Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. . Int J Syst Evol Microbiol 59:, 1992–1996. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim O. S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  22. Klatte S. , Rainey F. A. , Kroppenstedt R. M. . ( 1994; ). Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov.. Int J Syst Bacteriol 44:, 769–773. [CrossRef] [PubMed]
    [Google Scholar]
  23. Klatte S. , Kroppenstedt R. M. , Schumann P. , Altendorf K. , Rainey F. A. . ( 1996; ). Gordona hirsuta sp. nov.. Int J Syst Bacteriol 46:, 876–880. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kummer C. , Schumann P. , Stackebrandt E. . ( 1999; ). Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. . Int J Syst Bacteriol 49:, 1513–1522. [CrossRef] [PubMed]
    [Google Scholar]
  25. le Roes M. , Goodwin C. M. , Meyers P. R. . ( 2008; ). Gordonia lacunae sp. nov., isolated from an estuary. . Syst Appl Microbiol 31:, 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lechevalier M. P. , Lechevalier H. A. . ( 1970; ). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol 20:, 435–443. [CrossRef]
    [Google Scholar]
  27. Lechevalier M. P. , De Bievre C. , Lechevalier H. A. . ( 1977; ). Chemotaxonomy of aerobic actinomycetes: phopholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  28. Linos A. , Steinbüchel A. , Spröer C. , Kroppenstedt R. M. . ( 1999; ). Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. . Int J Syst Bacteriol 49:, 1785–1791. [CrossRef] [PubMed]
    [Google Scholar]
  29. Linos A. , Berekaa M. M. , Steinbüchel A. , Kim K. K. , Sproer C. , Kroppenstedt R. M. . ( 2002; ). Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. . Int J Syst Evol Microbiol 52:, 1133–1139. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  31. Luo H. , Gu Q. , Xie J. , Hu C. , Liu Z. , Huang Y. . ( 2007; ). Gordonia shandongensis sp. nov., isolated from soil in China. . Int J Syst Evol Microbiol 57:, 605–608. [CrossRef] [PubMed]
    [Google Scholar]
  32. Maldonado L. A. , Stainsby F. M. , Ward A. C. , Goodfellow M. . ( 2003; ). Gordonia sinesedis sp. nov., a novel soil isolate. . Antonie van Leeuwenhoek 83:, 75–80. [CrossRef] [PubMed]
    [Google Scholar]
  33. Minnikin D. E. , Alshamaony L. , Goodfellow M. . ( 1975; ). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. . J Gen Microbiol 88:, 200–204. [CrossRef] [PubMed]
    [Google Scholar]
  34. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979; ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  35. Olsen G. J. , Matsuda H. , Hagstrom R. , Overbeek R. . ( 1994; ). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  36. Park S. , Kang S. J. , Kim W. , Yoon J. H. . ( 2009; ). Gordonia hankookensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 3172–3175. [CrossRef] [PubMed]
    [Google Scholar]
  37. Pruesse E. , Quast C. , Knittel K. , Fuchs B. M. , Ludwig W. , Peplies J. , Glöckner F. O. . ( 2007; ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res 35:, 7188–7196. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rhuland L. E. , Work E. , Denman R. F. , Hoare D. S. . ( 1955; ). The behaviour of the isomers of 2,6-diamionopimelic acid on paper chromatograms.. J Am Chem Soc 77:, 4844–4846. [CrossRef] [PubMed]
    [Google Scholar]
  39. Shen F. T. , Goodfellow M. , Jones A. L. , Chen Y. P. , Arun A. B. , Lai W. A. , Rekha P. D. , Young C. C. . ( 2006; ). Gordonia soli sp. nov., a novel actinomycete isolated from soil. . Int J Syst Evol Microbiol 56:, 2597–2601. [CrossRef] [PubMed]
    [Google Scholar]
  40. Soddell J. A. , Stainsby F. M. , Eales K. L. , Seviour R. J. , Goodfellow M. . ( 2006; ). Gordonia defluvii sp. nov., an actinomycete isolated from activated sludge foam. . Int J Syst Evol Microbiol 56:, 2265–2269. [CrossRef] [PubMed]
    [Google Scholar]
  41. Stackebrandt E. , Smida J. , Collins M. D. . ( 1988; ). Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). . J Gen Appl Microbiol 34:, 341–348. [CrossRef]
    [Google Scholar]
  42. Stackebrandt E. , Rainey F. A. , Ward-Rainey N. L. . ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef] [PubMed]
    [Google Scholar]
  43. Takeuchi M. , Hatano K. . ( 1998; ). Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. . Int J Syst Bacteriol 48:, 907–912. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  45. Tsukamura M. . ( 1971; ). Proposal of a new genus, Gordona, for slightly acid-fast organisms in sputum of patients with pulmonary disease and in soil. . J Gen Microbiol 68:, 15–26.[PubMed] [CrossRef]
    [Google Scholar]
  46. Xue Y. , Sun X. , Zhou P. , Liu R. , Liang F. , Ma Y. . ( 2003; ). Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. . Int J Syst Evol Microbiol 53:, 1643–1646. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yassin A. F. , Shen F. T. , Hupfer H. , Arun A. B. , Lai W. A. , Rekha P. D. , Young C. C. . ( 2007; ). Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. . Int J Syst Evol Microbiol 57:, 1065–1068. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yoon J. H. , Lee J. J. , Kang S. S. , Takeuchi M. , Shin Y. K. , Lee S. T. , Kang K. H. , Park Y. H. . ( 2000; ). Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. . Int J Syst Evol Microbiol 50:, 1203–1210. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zimmermann J. , Dott W. . ( 2009a; ). Recovery of phosphorus from sewage sludge incineration ash by combines bioleaching and bioaccumulation. In International Conference on Nutrient Recovery from Waste Water Streams. Edited by K. Ashley, D. Mavinic, F. Koch. IWA Publishing 2009. ISBN: 1843392321.
  51. Zimmermann J. , Dott W. . ( 2009b; ). Sequenced bioleaching and bioaccumulation of phosphorus from sludge combustion. A new way of resource reclaiming. . Adv Mat Res 71-73:, 625–628. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.037093-0
Loading
/content/journal/ijsem/10.1099/ijs.0.037093-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error