1887

Abstract

A study was performed on three isolates (LU2006-1, LU2006-2 and LU2006-3), which were sampled independently from cheese in western Switzerland in 2006, as well as a fourth isolate (A11-3426), which was detected in 2011, using a polyphasic approach. The isolates could all be assigned to the genus but not to any known species. Phenotypic and chemotaxonomic data were compatible with the genus and phylogenetic analysis based on 16S rRNA gene sequences confirmed that the closest relationships were with members of this genus. However, DNA–DNA hybridization demonstrated that the isolates did not belong to any currently described species. Cell-wall-binding domains of bacteriophage endolysins were able to attach to the isolates, confirming their tight relatedness to the genus . Although PCR targeting the central portion of the flagellin gene was positive, motility was not observed. The four isolates could not be discriminated by Fourier transform infrared spectroscopy or pulsed-field gel electrophoresis. This suggests that they represent a single species, which seems to be adapted to the environment in a cheese-ripening cellar as it was re-isolated from the same type of Swiss cheese after more than 5 years. Conjugation experiments demonstrated that the isolates harbour a transferable resistance to clindamycin. The isolates did not exhibit haemolysis or show any indication of human pathogenicity or virulence. The four isolates are affiliated with the genus but can be differentiated from all described members of the genus and therefore they merit being classified as representatives of a novel species, for which we propose the name sp. nov.; the type strain is LU2006-1 ( = DSM 24998  = LMG 26584).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036947-0
2013-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/526.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036947-0&mimeType=html&fmt=ahah

References

  1. Anderson D. G., McKay L. L.. ( 1983;). Simple and rapid method for isolating large plasmid DNA from lactic streptococci. . Appl Environ Microbiol 46:, 549–552.[PubMed]
    [Google Scholar]
  2. Bille J., Catimel B., Bannerman E., Jacquet C., Yersin M. N., Caniaux I., Monget D., Rocourt J.. ( 1992;). API Listeria, a new and promising one-day system to identify Listeria isolates. . Appl Environ Microbiol 58:, 1857–1860.[PubMed]
    [Google Scholar]
  3. Cai S., Wiedmann M.. ( 2001;). Characterization of the prfA virulence gene cluster insertion site in non-hemolytic Listeria spp.: probing the evolution of the Listeria virulence gene island. . Curr Microbiol 43:, 271–277. [CrossRef][PubMed]
    [Google Scholar]
  4. Christie R., Atkins E., Munch-Petersen E.. ( 1944;). A note on a lytic phenomenon shown by group B streptococci. . Aust J Exp Biol Med Sci 22:, 197–200. [CrossRef]
    [Google Scholar]
  5. Crandall A. D., Montville T. J.. ( 1998;). Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. . Appl Environ Microbiol 64:, 231–237.[PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Eugster M. R., Haug M. C., Huwiler S. G., Loessner M. J.. ( 2011;). The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. . Mol Microbiol 81:, 1419–1432. [CrossRef][PubMed]
    [Google Scholar]
  8. Farber J. M., Speirs J. I., Pontefract R., Conner D. E.. ( 1991;). Characteristics of nonpathogenic strains of Listeria monocytogenes. . Can J Microbiol 37:, 647–650. [CrossRef][PubMed]
    [Google Scholar]
  9. Gaillard J. L., Berche P., Mounier J., Richard S., Sansonetti P.. ( 1987;). In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. . Infect Immun 55:, 2822–2829.[PubMed]
    [Google Scholar]
  10. Graves L. M., Helsel L. O., Steigerwalt A. G., Morey R. E., Daneshvar M. I., Roof S. E., Orsi R. H., Fortes E. D., Milillo S. R.. & other authors ( 2010;). Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. . Int J Syst Evol Microbiol 60:, 1280–1288. [CrossRef][PubMed]
    [Google Scholar]
  11. Haas A., Brehm K., Kreft J., Goebel W.. ( 1991;). Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. . J Bacteriol 173:, 5159–5167.[PubMed]
    [Google Scholar]
  12. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Haug M. C., Tanner S. A., Lacroix C., Meile L., Stevens M. J.. ( 2010;). Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. . FEMS Microbiol Lett 313:, 111–119. [CrossRef][PubMed]
    [Google Scholar]
  14. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  15. Jacob A. E., Hobbs S. J.. ( 1974;). Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. . J Bacteriol 117:, 360–372.[PubMed]
    [Google Scholar]
  16. Jorgensen J. H., Hindler J. A., Bernard K., Citron D. M., Cockerill F. R., Fritsche T. R., Funke G., Heine H., McDermott P..& other authors ( 2010;). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline, CLSI document M45–A2, 2nd edn, vol. 30, no. 18.. Pennsylvania:: Clinical and Laboratory Standards Institute;.
  17. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  18. Kämpfer P.. ( 2012;). Systematics of prokaryotes: the state of the art. . Antonie van Leeuwenhoek 101:, 3–11. [CrossRef][PubMed]
    [Google Scholar]
  19. Lachica R. V.. ( 1990;). Simplified Henry technique for initial recognition of Listeria colonies. . Appl Environ Microbiol 56:, 1164–1165.[PubMed]
    [Google Scholar]
  20. Leclercq A., Clermont D., Bizet C., Grimont P. A., Le Flèche-Matéos A., Roche S. M., Buchrieser C., Cadet-Daniel V., Le Monnier A.. & other authors ( 2010;). Listeria rocourtiae sp. nov.. Int J Syst Evol Microbiol 60:, 2210–2214. [CrossRef][PubMed]
    [Google Scholar]
  21. Lecuit M., Ohayon H., Braun L., Mengaud J., Cossart P.. ( 1997;). Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. . Infect Immun 65:, 5309–5319.[PubMed]
    [Google Scholar]
  22. Leifson E., Palen M. I.. ( 1955;). Variations and spontaneous mutations in the genus Listeria in respect to flagellation and motility. . J Bacteriol 70:, 233–240.[PubMed]
    [Google Scholar]
  23. McLauchlin J., Rees C. E. D.. ( 2009;). The Genus Listeria. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 244–257. Edited by Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  24. Montagnani F., Zanchi A., Stolzuoli L., Croci L., Cellesi C.. ( 2007;). Clindamycin-resistant Streptococcus pneumoniae. . Emerg Infect Dis 13:, 801–802. [CrossRef][PubMed]
    [Google Scholar]
  25. Morot-Bizot S., Talon R., Leroy-Setrin S.. ( 2003;). Development of specific PCR primers for a rapid and accurate identification of Staphylococcus xylosus, a species used in food fermentation. . J Microbiol Methods 55:, 279–286. [CrossRef][PubMed]
    [Google Scholar]
  26. Nicholas K. B., Nicholas H. B. Jr, Deerfield D. W. II. ( 1997;). GeneDoc: analysis and visualization of genetic variation. . EMBNet News 4:, 1–4.
    [Google Scholar]
  27. Perreten V., Vorlet-Fawer L., Slickers P., Ehricht R., Kuhnert P., Frey J.. ( 2005;). Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. . J Clin Microbiol 43:, 2291–2302. [CrossRef][PubMed]
    [Google Scholar]
  28. Püttmann M., Ade N., Hof H.. ( 1993;). Dependence of fatty acid composition of Listeria spp. on growth temperature. . Res Microbiol 144:, 279–283. [CrossRef][PubMed]
    [Google Scholar]
  29. Rau J., Perz R., Klittich G., Contzen M.. ( 2009;). [Cereulide forming presumptive Bacillus cereus strains from food–differentiating analyses using cultural methods, LC-MS/MS, PCR, and infrared spectroscopy in consideration of thermotolerant isolates]. . Berl Munch Tierarztl Wochenschr 122:, 25–36 (in German).[PubMed]
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  31. Schmelcher M., Shabarova T., Eugster M. R., Eichenseher F., Tchang V. S., Banz M., Loessner M. J.. ( 2010;). Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. . Appl Environ Microbiol 76:, 5745–5756. [CrossRef][PubMed]
    [Google Scholar]
  32. Schmid M. W., Ng E. Y., Lampidis R., Emmerth M., Walcher M., Kreft J., Goebel W., Wagner M., Schleifer K. H.. ( 2005;). Evolutionary history of the genus Listeria and its virulence genes. . Syst Appl Microbiol 28:, 1–18. [CrossRef][PubMed]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Wortberg F., Nardy E., Contzen M., Rau J.. ( 2012;). Identification of Yersinia ruckeri from diseased salmonid fish by Fourier transform infrared spectroscopy. . J Fish Dis 35:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036947-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036947-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error