1887

Abstract

A novel pale pink-pigmented halophilic archaeon, strain DC30, was isolated from Aran-Bidgol salt lake, a hypersaline playa in Iran. Cells of strain DC30 were non-motile and pleomorphic, from rods to triangular or disc-shaped. Strain DC30 required at least 1.7 M NaCl and 0.05 M MgCl for growth (optimum, 3 M NaCl and 0.1 M MgCl). The optimum pH and temperature for growth of strain DC30 were pH 7.5 and 40 °C, respectively, although it was capable of growth over pH and temperature ranges of 6.5–8.5 and 25–50 °C, respectively. Analysis of the 16S rRNA gene sequence showed that strain DC30 was a member of the family . However, it had low 16S rRNA gene sequence similarities of 92.4 %, 89.4 % and 89.1 % to the most closely related haloarchaeal taxa, the type species of the genera , and , respectively. The DNA GC content was 66.0 mol%. Phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, common phospholipids found in haloarchaea, were present. Three minor phospholipids and one unidentified glycolipid were also observed. The only quinone present was MK-8(II-H). The physiological, biochemical and phylogenetic differences between strain DC30 and other previously described genera of extremely halophilic archaea suggest that strain DC30 represents a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is DC30 ( = IBRC 10041 = KCTC 4046).

Funding
This study was supported by the:
  • , Iranian Biological Resource Center (IBRC) , (Award MI- 1388-01)
  • , International Foundation for Science (IFS) , (Award A/4527-1)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036921-0
2012-08-01
2020-11-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1932.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036921-0&mimeType=html&fmt=ahah

References

  1. Antón J., Peña A., Santos F., Martínez-García M., Schmitt-Kopplin P., Rosselló-Mora R. 2008; Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber . Saline Syst 4:15 [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol 32:781–791[PubMed]
    [Google Scholar]
  3. Bardavid R. E., Mana L., Oren A. 2007; Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57:780–783 [CrossRef][PubMed]
    [Google Scholar]
  4. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria . Am J Clin Nutr 25:1324–1328[PubMed]
    [Google Scholar]
  5. Cui H. L., Gao X., Sun F. F., Dong Y., Xu X. W., Zhou Y. G., Liu H. C., Oren A., Zhou P. J. 2010; Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui H. L., Yang X., Gao X., Xu X. W. 2011; Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae . Int J Syst Evol Microbiol 61:2682–2689 [CrossRef][PubMed]
    [Google Scholar]
  7. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  9. Dyall-Smith M. L. 2006 The Halohandbook: Protocols for Haloarchaeal Genetics. http://www.haloarchaea.com/resources/halohandbook
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  12. González C., Gutiérrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  13. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order I. Halobacteriales . In Bergey’s Manual of Systematic Bacteriology The Archaea and Deeply Branching and Phototrophic Bacteria, 2nd edn. vol. 1 pp. 294–301 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  14. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  15. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A. 2001; Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142 [CrossRef][PubMed]
    [Google Scholar]
  16. Kamekura M., Dyall-Smith M. L. 1995; Taxonomy of the family Halobacteriaceae and description of two new genera Halorubrobacterium and Natrialba . J Gen Appl Microbiol 41:333–350 [CrossRef]
    [Google Scholar]
  17. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  19. Oren A. 2002; Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7 [CrossRef][PubMed]
    [Google Scholar]
  20. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  21. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Tamura K., Nei M., Dudley J., Kumar S. 2004; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  26. Wainø M., Tindall B. J., Ingvorsen K. 2000; Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036921-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036921-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error