1887

Abstract

A Gram-staining negative, motile, non-spore-forming, short rod-shaped (0.8–1.5×1.5–2.0 µm), halophilic bacterium, designated strain NTU-107, was isolated from brine samples collected from the abandoned Beimen saltern in southern Taiwan. The novel strain grew with 0–15 % (w/v) NaCl (optimum between 5 % and 10 %), at 15–55 °C (optimum 40 °C) and at pH 5.5–9.5 (optimum pH 7.5). The major cellular fatty acids were Cω7, C and Ccyclo ω8, the genomic DNA G+C content was 66.5 mol%, and the predominant ubiquinone was Q-9. The major polar lipids included phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. In a phylogenetic analysis based on 16S rRNA gene sequences, strain NTU-107 clustered with members of the genus . In hybridization experiments, however, the levels of DNA–DNA relatedness between strain NTU-107 and the type strains of its closest phylogenetic neighbours ( , and ) were all found to be less than 40 %. Based on the phenotypic, chemotaxonomic and genetic data, strain NTU-107 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is NTU-107 ( = BCRC 17999 = KCTC 22876 = JCM 16084).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036871-0
2012-12-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/3013.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036871-0&mimeType=html&fmt=ahah

References

  1. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R.. ( 2002;). Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. . Int J Syst Evol Microbiol 52:, 485–491.[PubMed]
    [Google Scholar]
  2. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A.. ( 2002;). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. . Syst Appl Microbiol 25:, 207–211. [CrossRef][PubMed]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A.. ( 2007;). Recommended minimal standards for describing new taxa of the family Halomonadaceae. . Int J Syst Evol Microbiol 57:, 2436–2446. [CrossRef][PubMed]
    [Google Scholar]
  4. Azeredo J., Oliveira R.. ( 1996;). A new method for precipitating bacterial exopolysaccharides. . Biotechnol Tech 10:, 341–344. [CrossRef]
    [Google Scholar]
  5. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M.. ( 2007;). Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. . Int J Syst Evol Microbiol 57:, 2307–2313. [CrossRef][PubMed]
    [Google Scholar]
  6. Cabrera A., Aguilera M., Fuentes S., Incerti C., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2007;). Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. . Int J Syst Evol Microbiol 57:, 376–380. [CrossRef][PubMed]
    [Google Scholar]
  7. Descheemaeker P., Swings J.. ( 1995;). The application of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present in decaying Lede-stone of the St. Bavo Cathedral in Ghent. . Sci Total Environ 167:, 241–247. [CrossRef]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D.. ( 1996;). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. . Int J Syst Bacteriol 46:, 550–558. [CrossRef]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  12. Franzmann P. D., Tindall B. J.. ( 1990;). A chemotaxonomic study of members of the family Halomonadaceae. . Syst Appl Microbiol 13:, 142–147. [CrossRef]
    [Google Scholar]
  13. Franzmann P. D., Wehmeyer U., Stackebrandt E.. ( 1988;). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. . Syst Appl Microbiol 11:, 16–19. [CrossRef]
    [Google Scholar]
  14. García M. T., Mellado E., Ostos J. C., Ventosa A.. ( 2004;). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. . Int J Syst Evol Microbiol 54:, 1723–1728. [CrossRef][PubMed]
    [Google Scholar]
  15. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F.. ( 1998;). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. . Int J Syst Bacteriol 48:, 677–686. [CrossRef][PubMed]
    [Google Scholar]
  16. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  17. Heyrman J., Mergaert J., Denys R., Swings J.. ( 1999;). The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. . FEMS Microbiol Lett 181:, 55–62. [CrossRef][PubMed]
    [Google Scholar]
  18. Jeon C. O., Lim J. M., Lee J. R., Lee G. S., Park D. J., Lee J. C., Oh H. W., Kim C. J.. ( 2007;). Halomonas kribbensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. . Int J Syst Evol Microbiol 57:, 2194–2198. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim K. K., Jin L., Yang H. C., Lee S. T.. ( 2007;). Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. . Int J Syst Evol Microbiol 57:, 675–681. [CrossRef][PubMed]
    [Google Scholar]
  20. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  21. Lim J. M., Yoon J. H., Lee J. C., Jeon C. O., Park D. J., Sung C., Kim C. J.. ( 2004;). Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. . Int J Syst Evol Microbiol 54:, 2037–2042. [CrossRef][PubMed]
    [Google Scholar]
  22. Margesin R., Schinner F.. ( 2001;). Potential of halotolerant and halophilic microorganisms for biotechnology. . Extremophiles 5:, 73–83. [CrossRef][PubMed]
    [Google Scholar]
  23. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V.. ( 2004;). Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. . Int J Syst Evol Microbiol 54:, 733–737. [CrossRef][PubMed]
    [Google Scholar]
  24. Mas-Castellà J., Guerrero R.. ( 1995;). Poly-β-hydroxyalkanoate determination in bacteria from aquatic samples. . J Microbiol Methods 22:, 151–164. [CrossRef]
    [Google Scholar]
  25. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  26. Menes R. J., Viera C. E., Farías M. E., Seufferheld M. J.. ( 2011;). Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. . Int J Syst Evol Microbiol 61:, 1211–1217. [CrossRef][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Ntougias S., Zervakis G. I., Fasseas C.. ( 2007;). Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. . Int J Syst Evol Microbiol 57:, 1975–1983. [CrossRef][PubMed]
    [Google Scholar]
  29. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K.. ( 1993;). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. . Arch Microbiol 160:, 333–337. [CrossRef][PubMed]
    [Google Scholar]
  30. Qu L., Lai Q., Zhu F., Hong X., Zhang J., Shao Z., Sun X.. ( 2011;). Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. . Int J Syst Evol Microbiol 61:, 1612–1616. [CrossRef][PubMed]
    [Google Scholar]
  31. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E.. ( 2002;). Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. . Int J Syst Evol Microbiol 52:, 1767–1772. [CrossRef][PubMed]
    [Google Scholar]
  32. Sánchez-Porro C., Martín S., Mellado E., Ventosa A.. ( 2003;). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. . J Appl Microbiol 94:, 295–300. [CrossRef][PubMed]
    [Google Scholar]
  33. Shin Y. K., Lee J. S., Chun C. O., Kim H. J., Park Y. H.. ( 1996;). Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. . J Microbiol Biotechnol 6:, 68–69.
    [Google Scholar]
  34. Stackebrandt E., Liesack W.. ( 1993;). Nucleic acids and classification. . In Handbook of New Bacterial Systematics, pp. 152–189. Edited by Goodfellow M., O’Donnell A. G... London:: Academic Press;.
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  36. Ventosa A., Nieto J. J.. ( 1995;). Biotechnological applications and potentialities of halophilic microorganisms. . World J Microbiol Biotechnol 11:, 85–94. [CrossRef]
    [Google Scholar]
  37. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  38. Ventosa A., Gutiérrez M. C., García M. T., Ruiz-Berraquero F.. ( 1989;). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39:, 382–386. [CrossRef]
    [Google Scholar]
  39. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E.. ( 1980;). Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. . Int J Syst Bacteriol 30:, 485–495. [CrossRef]
    [Google Scholar]
  40. Wang C.-Y., Chang C.-C., Ng C. C., Chen T.-W., Shyu Y.-T.. ( 2008;). Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. . Int J Syst Evol Microbiol 58:, 341–345. [CrossRef][PubMed]
    [Google Scholar]
  41. Wang C.-Y., Ng C.-C., Tzeng W.-S., Shyu Y.-T.. ( 2009;). Marinobacter szutsaonensis sp. nov., isolated from Szutsao, a solar saltern in southern Taiwan. . Int J Syst Evol Microbiol 59:, 2605–2609. [CrossRef][PubMed]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036871-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036871-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error