1887

Abstract

A Gram-staining negative, motile, non-spore-forming, short rod-shaped (0.8–1.5×1.5–2.0 µm), halophilic bacterium, designated strain NTU-107, was isolated from brine samples collected from the abandoned Beimen saltern in southern Taiwan. The novel strain grew with 0–15 % (w/v) NaCl (optimum between 5 % and 10 %), at 15–55 °C (optimum 40 °C) and at pH 5.5–9.5 (optimum pH 7.5). The major cellular fatty acids were Cω7, C and Ccyclo ω8, the genomic DNA G+C content was 66.5 mol%, and the predominant ubiquinone was Q-9. The major polar lipids included phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. In a phylogenetic analysis based on 16S rRNA gene sequences, strain NTU-107 clustered with members of the genus . In hybridization experiments, however, the levels of DNA–DNA relatedness between strain NTU-107 and the type strains of its closest phylogenetic neighbours (, and ) were all found to be less than 40 %. Based on the phenotypic, chemotaxonomic and genetic data, strain NTU-107 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is NTU-107 ( = BCRC 17999 = KCTC 22876 = JCM 16084).

Funding
This study was supported by the:
  • Republic of China’s Council of Agriculture
  • National Science Council
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036871-0
2012-12-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/3013.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036871-0&mimeType=html&fmt=ahah

References

  1. Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R., Rosselló-Mora R. 2002; Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491[PubMed]
    [Google Scholar]
  2. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002; Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [View Article][PubMed]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [View Article][PubMed]
    [Google Scholar]
  4. Azeredo J., Oliveira R. 1996; A new method for precipitating bacterial exopolysaccharides. Biotechnol Tech 10:341–344 [View Article]
    [Google Scholar]
  5. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [View Article][PubMed]
    [Google Scholar]
  6. Cabrera A., Aguilera M., Fuentes S., Incerti C., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2007; Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. Int J Syst Evol Microbiol 57:376–380 [View Article][PubMed]
    [Google Scholar]
  7. Descheemaeker P., Swings J. 1995; The application of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present in decaying Lede-stone of the St. Bavo Cathedral in Ghent. Sci Total Environ 167:241–247 [View Article]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [View Article]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  12. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 13:142–147 [View Article]
    [Google Scholar]
  13. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [View Article]
    [Google Scholar]
  14. García M. T., Mellado E., Ostos J. C., Ventosa A. 2004; Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728 [View Article][PubMed]
    [Google Scholar]
  15. Garriga M., Ehrmann M. A., Arnau J., Hugas M., Vogel R. F. 1998; Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48:677–686 [View Article][PubMed]
    [Google Scholar]
  16. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  17. Heyrman J., Mergaert J., Denys R., Swings J. 1999; The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62 [View Article][PubMed]
    [Google Scholar]
  18. Jeon C. O., Lim J. M., Lee J. R., Lee G. S., Park D. J., Lee J. C., Oh H. W., Kim C. J. 2007; Halomonas kribbensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 57:2194–2198 [View Article][PubMed]
    [Google Scholar]
  19. Kim K. K., Jin L., Yang H. C., Lee S. T. 2007; Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 57:675–681 [View Article][PubMed]
    [Google Scholar]
  20. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  21. Lim J. M., Yoon J. H., Lee J. C., Jeon C. O., Park D. J., Sung C., Kim C. J. 2004; Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 54:2037–2042 [View Article][PubMed]
    [Google Scholar]
  22. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [View Article][PubMed]
    [Google Scholar]
  23. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [View Article][PubMed]
    [Google Scholar]
  24. Mas-Castellà J., Guerrero R. 1995; Poly-β-hydroxyalkanoate determination in bacteria from aquatic samples. J Microbiol Methods 22:151–164 [View Article]
    [Google Scholar]
  25. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  26. Menes R. J., Viera C. E., Farías M. E., Seufferheld M. J. 2011; Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. Int J Syst Evol Microbiol 61:1211–1217 [View Article][PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  28. Ntougias S., Zervakis G. I., Fasseas C. 2007; Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57:1975–1983 [View Article][PubMed]
    [Google Scholar]
  29. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337 [View Article][PubMed]
    [Google Scholar]
  30. Qu L., Lai Q., Zhu F., Hong X., Zhang J., Shao Z., Sun X. 2011; Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int J Syst Evol Microbiol 61:1612–1616 [View Article][PubMed]
    [Google Scholar]
  31. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 52:1767–1772 [View Article][PubMed]
    [Google Scholar]
  32. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [View Article][PubMed]
    [Google Scholar]
  33. Shin Y. K., Lee J. S., Chun C. O., Kim H. J., Park Y. H. 1996; Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T . J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  34. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp. 152–189 Edited by Goodfellow M., O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  36. Ventosa A., Nieto J. J. 1995; Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94 [View Article]
    [Google Scholar]
  37. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  38. Ventosa A., Gutiérrez M. C., García M. T., Ruiz-Berraquero F. 1989; Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39:382–386 [View Article]
    [Google Scholar]
  39. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. Int J Syst Bacteriol 30:485–495 [View Article]
    [Google Scholar]
  40. Wang C.-Y., Chang C.-C., Ng C. C., Chen T.-W., Shyu Y.-T. 2008; Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58:341–345 [View Article][PubMed]
    [Google Scholar]
  41. Wang C.-Y., Ng C.-C., Tzeng W.-S., Shyu Y.-T. 2009; Marinobacter szutsaonensis sp. nov., isolated from Szutsao, a solar saltern in southern Taiwan. Int J Syst Evol Microbiol 59:2605–2609 [View Article][PubMed]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.036871-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036871-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error