1887

Abstract

The phylogenetic position and phenotypic characteristics of two non-spore-forming bacilli similar to members of the genus were studied. The Gram-reaction-positive, slightly motile, facultatively anaerobic strains were isolated from the water plant sampled from a freshwater pond in Bavaria, Germany. Although no identification was possible employing the API test (bioMérieux), 16S rRNA sequence analysis confirmed a close phylogenetic similarity to DSM 22097 (99.0 % sequence similarity) and a more distant relationship to other species (96.0 % to DSM 20600 and 95.0 % similarity to DSM 20601). DNA–DNA hybridization analysis between the isolates and DSM 22097 yielded a similarity of 22.5 %. Analysis of partial sequences of , , and HSP60 were studied and compared with those of other members of the genus and DSM 20171 supporting the relationships indicated by 16S rRNA gene sequences. The studied isolates were non-haemolytic and were not associated with cases of human or animal disease. While the results demonstrate that the strains belong to the genus , phenotypic and genotypic differences from DSM 22097 suggest that the strains represent a novel species for which the name sp. nov. is proposed; the type strain is WS 4560 ( = DSM 24698 = LMG 26374), with WS 4615 ( = DSM 24699 = LMG 26375) as a second strain of the species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036830-0
2013-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/641.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036830-0&mimeType=html&fmt=ahah

References

  1. Altenburger P. , Kämpfer P. , Makristathis A. , Lubitz W. , Busse H. J. . ( 1996; ). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Bille J. , Catimel B. , Bannerman E. , Jacquet C. , Yersin M. N. , Caniaux I. , Monget D. , Rocourt J. . ( 1992; ). API Listeria, a new and promising one-day system to identify Listeria isolates. . Appl Environ Microbiol 58:, 1857–1860.[PubMed]
    [Google Scholar]
  3. Büchl N. R. , Wenning M. , Seiler H. , Mietke-Hofmann H. , Scherer S. . ( 2008; ). Reliable identification of closely related Issatchenkia and Pichia species using artificial neural network analysis of Fourier-transform infrared spectra. . Yeast 25:, 787–798. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  5. Christie R. , Atkins N. E. , Munch-Petersen E. . ( 1944; ). A note on a lytic phenomenon shown by group B streptococci. . Aust J Exp Biol Med Sci 22:, 197–200. [CrossRef]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Goh S. H. , Potter S. , Wood J. O. , Hemmingsen S. M. , Reynolds R. P. , Chow A. W. . ( 1996; ). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. . J Clin Microbiol 34:, 818–823.[PubMed]
    [Google Scholar]
  8. Gouin E. , Mengaud J. , Cossart P. . ( 1994; ). The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. . Infect Immun 62:, 3550–3553.[PubMed]
    [Google Scholar]
  9. Graves L. M. , Helsel L. O. , Steigerwalt A. G. , Morey R. E. , Daneshvar M. I. , Roof S. E. , Orsi R. H. , Fortes E. D. , Milillo S. R. . & other authors ( 2010; ). Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. . Int J Syst Evol Microbiol 60:, 1280–1288. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hain T. , Chatterjee S. S. , Ghai R. , Kuenne C. T. , Billion A. , Steinweg C. , Domann E. , Kärst U. , Jänsch L. . & other authors ( 2007; ). Pathogenomics of Listeria spp. . Int J Med Microbiol 297:, 541–557. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  12. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism III, pp. 21–132. Edited by Munro M. R. . . New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  13. Khelef N. , Lecuit M. , Buchrieser C. , Cabanes D. , Dussurget O. , Cossart P. . ( 2006; ). Listeria monocytogenes and the genus Listeria . . In The Prokaryotes, pp. 404–476. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  14. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  15. Leclercq A. , Clermont D. , Bizet C. , Grimont P. A. , Le Flèche-Matéos A. , Roche S. M. , Buchrieser C. , Cadet-Daniel V. , Le Monnier A. . & other authors ( 2010; ). Listeria rocourtiae sp. nov.. Int J Syst Evol Microbiol 60:, 2210–2214. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ludwig W. , Schleifer K.-H. , Whitman W. B. . ( 2009; ). Listeriaceae . . In Bergey's Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 244–268. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K.-H. , Whitman W. B. . . New York:: Springer;.
    [Google Scholar]
  17. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Rebuffo C. A. , Schmitt J. , Wenning M. , von Stetten F. , Scherer S. . ( 2006; ). Reliable and rapid identification of Listeria monocytogenes and Listeria species by artificial neural network-based Fourier transform infrared spectroscopy. . Appl Environ Microbiol 72:, 994–1000. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rhuland L. E. , Work E. , Denman R. F. , Hoare D. S. . ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  20. Rocourt J. , Buchrieser C. . ( 2007; ). The genus Listeria and Listeria monocytogenes: phylogenetic position, taxonomy and identification. . In Listeria, Listeriosis and Food Safety, pp. 1–20. Edited by Ryser E. T. , Marth E. H. . . Boca Raton:: CRC Press;.
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sauders B. D. , Wiedmann M. . ( 2007; ). Ecology of Listeria species and L. monocytogenes in the natural environment. . In Listeria, Listeriosis and Food Safety, pp. 21–54. Edited by Ryser E. T. , Marth E. H. . . Boca Raton:: CRC Press;.
    [Google Scholar]
  23. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  24. Seeley H. W. , Van Demark P. J. , Lee J. J. . ( 1972; ). Microbes in Action: a Laboratory Manual of Microbiology, , 2nd edn.. San Francisco:: WH Freeman;.
    [Google Scholar]
  25. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  26. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  27. Van de Peer Y. , De Wachter R. . ( 1997; ). Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. . Comput Appl Biosci 13:, 227–230.[PubMed]
    [Google Scholar]
  28. Verbarg S. , Frühling A. , Cousin S. , Brambilla E. , Gronow S. , Lünsdorf H. , Stackebrandt E. . ( 2008; ). Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae . . Curr Microbiol 56:, 603–608. [CrossRef] [PubMed]
    [Google Scholar]
  29. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005; ). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036830-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036830-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error