1887

Abstract

A group of 11 bacterial strains was isolated during microbiological investigations of pharyngeal swabs collected from domestic pigeons ( f. ). Phenotypic properties of the isolates closely resembled those of members of the genus within the family . The genus presently contains two species, and . The pigeon isolates differed from by their lack of pigment production and negative CAMP co-haemolysis reaction. They grew more slowly at 37 °C under microaerobic conditions and showed reduced viability during storage under aerobic conditions at different temperatures, compared with both species. Comparisons of protein profiles with matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) MS analysis allowed differentiation between the new pigeon isolates and both and . Phylogenetic analysis based on 16S rRNA gene and gene (encoding RNA polymerase beta subunit) sequences supported the affiliation of the 11 strains to a novel species within the genus , for which we propose the name sp. nov. The type strain is 8151 ( = DSM 24015  = LMG 26094). Emended descriptions of the genus and of its species and are also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036798-0
2013-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/280.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036798-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L.. ( 2006;). GenBank. . Nucleic Acids Res 34: (Database issue), D16–D20. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P.. ( 1996;). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). . Int J Syst Bacteriol 46:, 128–148. [CrossRef]
    [Google Scholar]
  4. Bisgaard M.. ( 1982;). Antigenic studies on Pasteurella anatipestifer, species incertae sedis, using slide and tube agglutination. . Avian Pathol 11:, 341–350. [CrossRef][PubMed]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  6. Christensen H., Bisgaard M.. ( 2010;). Phylogenetic relationships of Riemerella anatipestifer serovars and related taxa and an evaluation of specific PCR tests reported for R. anatipestifer. . J Appl Microbiol 108:, 1612–1619. [CrossRef][PubMed]
    [Google Scholar]
  7. Crasta K. C., Chua K. L., Subramaniam S., Frey J., Loh H., Tan H. M.. ( 2002;). Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestifer. . J Bacteriol 184:, 1932–1939. [CrossRef][PubMed]
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Hinz K. H., Ryll M., Köhler B.. ( 1998a;). Detection of acid production from carbohydrates by Riemerella anatipestifer and related organisms using the buffered single substrate test. . Vet Microbiol 60:, 277–284. [CrossRef][PubMed]
    [Google Scholar]
  10. Hinz K. H., Ryll M., Köhler B., Glünder G.. ( 1998b;). Phenotypic characteristics of Riemerella anatipestifer and similar micro-organisms from various hosts. . Avian Pathol 27:, 33–42. [CrossRef][PubMed]
    [Google Scholar]
  11. Loh H., Teo T. P., Tan H. C.. ( 1992;). Serotypes of ‘Pasteurellaanatipestifer isolates from ducks in Singapore: a proposal of new serotypes. . Avian Pathol 21:, 453–459. [CrossRef][PubMed]
    [Google Scholar]
  12. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D.. & other authors ( 2008;). Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. . J Clin Microbiol 46:, 1946–1954. [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  14. Pathanasophon P., Tanticharoenyos T., Sawada T.. ( 1994;). Physiological characteristics, antimicrobial susceptibility and serotypes of Pasteurella anatipestifer isolated from ducks in Thailand. . Vet Microbiol 39:, 179–185. [CrossRef][PubMed]
    [Google Scholar]
  15. Piechulla K., Pohl S., Mannheim W.. ( 1986;). Phenotypic and genetic relationships of so-called Moraxella (Pasteurella) anatipestifer to the Flavobacterium/Cytophaga group. . Vet Microbiol 11:, 261–270. [CrossRef][PubMed]
    [Google Scholar]
  16. Rice P., Longden I., Bleasby A.. ( 2000;). emboss: the European Molecular Biology Open Software Suite. . Trends Genet 16:, 276–277. [CrossRef][PubMed]
    [Google Scholar]
  17. Rubbenstroth D., Ryll M., Behr K. P., Rautenschlein S.. ( 2009;). Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus. . Avian Pathol 38:, 497–507. [CrossRef][PubMed]
    [Google Scholar]
  18. Rubbenstroth D., Hotzel H., Knobloch J., Teske L., Rautenschlein S., Ryll M.. ( 2011;). Isolation and characterization of atypical Riemerella columbina strains from pigeons and their differentiation from Riemerella anatipestifer. . Vet Microbiol 147:, 103–112. [CrossRef][PubMed]
    [Google Scholar]
  19. Sandhu T. S., Leister M. L.. ( 1991;). Serotypes of ‘Pasteurellaanatipestifer isolates from poultry in different countries. . Avian Pathol 20:, 233–239. [CrossRef][PubMed]
    [Google Scholar]
  20. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K.. ( 2008;). Classification and identification of bacteria by mass spectrometry and computational analysis. . PLoS ONE 3:, e2843. [CrossRef][PubMed]
    [Google Scholar]
  21. Segers P., Mannheim W., Vancanneyt M., De Brandt K., Hinz K. H., Kersters K., Vandamme P.. ( 1993;). Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. . Int J Syst Bacteriol 43:, 768–776. [CrossRef][PubMed]
    [Google Scholar]
  22. Singh R., Teo T. P., Tay Y. H., Ong L. S. K.. ( 1989;). Biochemical characteristics and drug sensitivity of Pasteurella anatipestifer isolates from Singapore ducks. . Singapore J Prim Ind 17:, 59–62.
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  26. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  27. Vancanneyt M., Vandamme P., Segers P., Torck U., Coopman R., Kersters K., Hinz K. H.. ( 1999;). Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. . Int J Syst Bacteriol 49:, 289–295. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036798-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036798-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error