sp. nov. and emended description of the genus Free

Abstract

A Gram-negative, rod-shaped, weakly motile, non-spore-forming bacterium (D9) was isolated from the gut of (Diplopoda) on 1/3-strength nutrient agar plates. On the basis of 16S rRNA gene sequence similarity, strain D9 was shown to be phylogenetically closely related to the type strain of , the sole species of the genus , family The similarity of the 16S rRNA gene sequences of train D9 and DSM 5075 was 98.4 %. Other strains that showed high pairwise similarities with the isolate belonged to the genus : ATCC 33641 (96.8 % 16S rRNA gene sequence similarity), CCUG 53443 (96.8 %), NCTC 5923 (96.8 %), ATCC 29833 (96.8 %), CCUG 52882 (96.7 %) and ATCC 29473 (96.5 % ). The similarities of sequences of the housekeeping genes , and between strain D9 and DSM 5075 and other members of the were less than 94 %. Phylogenetic trees based on all four gene sequences unequivocally grouped the isolate with the type strain of and separately from the genus . Cells contained the quinones Q-8, Q-7 and MK-8. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the DNA (48.3 mol%) and the whole-cell fatty acid composition of strain D9 (C, Cω7, C, cyclo-C and Cω7 as major components) were typical for members of the . DNA–DNA hybridization of strain D9 with DSM 5075 resulted in a relatedness of 30.4 %, indicating that the isolate did not belong to . Physiological tests allowed the phenotypic differentiation of strain D9 from DSM 5075 as well as from members of the genus From these results, it is concluded that strain D9 represents a novel species, for which the name sp. nov. is proposed (type strain D9  = DSM 21983  = CCM 7845). The description of the genus is emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036749-0
2013-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/1/260.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036749-0&mimeType=html&fmt=ahah

References

  1. Aldová E., Hausner O., Gabrhelová M., Schindler J., Petrás P., Braná H. ( 1983 ). A hydrogen sulphide producing Gram-negative rod from water. . Zentralbl Bakteriol Mikrobiol Hyg [A] 254, 95108.[PubMed]
    [Google Scholar]
  2. Aldová E., Hausner O., Brenner D. J., Kocmoud Z., Schindler J., Potuzniková B., Petrás P. ( 1988 ). Pragia fontium gen. nov., sp. nov. of the family Enterobacteriaceae, isolated from water. . Int J Syst Bacteriol 38, 183189. [View Article]
    [Google Scholar]
  3. Bottone E. J., Bercovier H., Mollaret H. H. ( 2005 ). Genus XLI. Yersinia Van Loghem 1944, 15AL . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, The Gammaproteobacteria, pp. 838848. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  4. Bouvet O. M. M., Grimont P. A. D., Richard C., Aldová E., Hauser O., Gabrhelová M. ( 1985 ). Budvicia aquatica gen. nov., sp. nov.: a hydrogen sulfide-producing member of the Enterobacteriaceae . . Int J Syst Bacteriol 35, 6064. [View Article]
    [Google Scholar]
  5. Brenner D. J., Farmer J. J. III ( 2005 ). Family I. Enterobacteriaceae Rahn 1937, Nom. Fam. Cons. Opin. 15, Jud. Comm. 1958a, 73; Ewing, Farmer, and Brenner 1980, 674; Judicial Commission 1981, 104. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, The Gammaproteobacteria, pp. 587607. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;.
    [Google Scholar]
  6. Buck J. D. ( 1982 ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44, 992993.[PubMed]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. ( 1977 ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81, 461466. [View Article] [PubMed]
    [Google Scholar]
  8. Collins M. D., Jones D. ( 1981 ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45, 316354.[PubMed]
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977 ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100, 221230. [View Article] [PubMed]
    [Google Scholar]
  10. Dauga C. ( 2002 ). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. . Int J Syst Evol Microbiol 52, 531547.[PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [View Article] [PubMed]
    [Google Scholar]
  12. Embley T. M., Wait R. ( 1994 ). Structural lipids of Eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141147. Edited by Goodfellow M., O’Donnell A. G. . New York:: John Wiley and Sons;.
    [Google Scholar]
  13. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. ( 1997 ). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47, 11291133. [View Article] [PubMed]
    [Google Scholar]
  14. Harada H., Ishikawa H. ( 1997 ). Phylogenetical relationship based on groE genes among phenotypically related Enterobacter, Pantoea, Klebsiella, Serratia and Erwinia species. . J Gen Appl Microbiol 43, 355361. [View Article] [PubMed]
    [Google Scholar]
  15. Hugh R., Leifson E. ( 1953 ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66, 2426.[PubMed]
    [Google Scholar]
  16. Huisman G. W., Siegele D., Zambrano M. M., Kolter R. ( 1996 ). Morphological and physiological changes during stationary phase. . In Escherichia coli and Salmonella. Cellular and Molecular Biology, , 2nd edn., vol. 1, p. 1672. Edited by Neidhardt F. C. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Huß V. A. R., Festl H., Schleifer K.-H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article]
    [Google Scholar]
  18. Jantzen E., Lassen J. ( 1980 ). Characterization of Yersinia species by analysis of whole-cell fatty acids. . Int J Syst Bacteriol 30, 421428. [View Article]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [View Article]
    [Google Scholar]
  20. Kämpfer P., Ruppel S., Remus R. ( 2005 ). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae . . Syst Appl Microbiol 28, 213221. [View Article] [PubMed]
    [Google Scholar]
  21. Knapp B. A., Seeber J., Podmirseg S. M., Rief A., Meyer E., Insam H. ( 2009 ). Molecular fingerprinting analysis of the gut microflora of Cylindroiulus fulviceps (diplopoda). . Pedobiologia (Jena) 52, 325336. [View Article]
    [Google Scholar]
  22. Knapp B. A., Seeber J., Rief A., Meyer E., Insam H. ( 2010 ). Bacterial community composition of the gut microbiota of Cylindroiulus fulviceps (diplopoda) as revealed by molecular fingerprinting and cloning. . Folia Microbiol (Praha) 55, 489496. [View Article] [PubMed]
    [Google Scholar]
  23. Lányí B. ( 1987 ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19, 167. [View Article]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. & other authors ( 2004 ). arb: a software environment for sequence data. . Nucleic Acids Res 32, 13631371. [View Article] [PubMed]
    [Google Scholar]
  25. Madhaiyan M., Poonguzhali S., Lee J.-S., Saravanan V. S., Lee K.-C., Santhanakrishnan P. ( 2010 ). Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. . Int J Syst Evol Microbiol 60, 15591564. [View Article] [PubMed]
    [Google Scholar]
  26. Merhej V., Adékambi T., Pagnier I., Raoult D., Drancourt M. ( 2008 ). Yersinia massiliensis sp. nov., isolated from fresh water. . Int J Syst Evol Microbiol 58, 779784. [View Article] [PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  28. Minnikin D. E., Collins M. D., Goodfellow M. ( 1979 ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47, 8795. [View Article]
    [Google Scholar]
  29. Mollet C., Drancourt M., Raoult D. ( 1997 ). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26, 10051011. [View Article] [PubMed]
    [Google Scholar]
  30. Nagarajan S., Swaminathan M., Sabarathinam P. ( 2005 ). Changes in the fatty-acid profile of cyanide-utilizing Yersinia species. . Chem Biodivers 2, 780784. [View Article] [PubMed]
    [Google Scholar]
  31. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. ( 2007 ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35, 71887196. [View Article] [PubMed]
    [Google Scholar]
  32. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. ( 1996 ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46, 10881092. [View Article] [PubMed]
    [Google Scholar]
  33. Rameshkumar N., Lang E., Nair S. ( 2010 ). Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 60, 179186. [View Article] [PubMed]
    [Google Scholar]
  34. Reasoner D. J., Geldreich E. E. ( 1985 ). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49, 17.[PubMed]
    [Google Scholar]
  35. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  36. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20, 16.
    [Google Scholar]
  37. Skrodenyte-Arbaciauskiene V., Sruoga A., Butkauskas D. ( 2006 ). Assessment of microbial diversity in the river trout Salmo truttafario L. intestinal tract identified by partial 16S rRNA gene sequence analysis. . Fish Sci 72, 597602. [View Article]
    [Google Scholar]
  38. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607655. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  39. Souza R. A., Falcão D. P., Falcão J. P. ( 2011 ). Emended description of Yersinia massiliensis . . Int J Syst Evol Microbiol 61, 10941097. [View Article] [PubMed]
    [Google Scholar]
  40. Sprague L. D., Scholz H. C., Amann S., Busse H. J., Neubauer H. ( 2008 ). Yersinia similis sp. nov.. Int J Syst Evol Microbiol 58, 952958. [View Article] [PubMed]
    [Google Scholar]
  41. Stanier R. Y., Palleroni N. J., Doudoroff M. ( 1966 ). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43, 159271. [View Article] [PubMed]
    [Google Scholar]
  42. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  43. Tan Y., Wu M., Liu H., Dong X., Guo Z., Song Z., Li Y., Cui Y., Song Y. & other authors ( 2010 ). Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis . . Lett Appl Microbiol 50, 104111. [View Article] [PubMed]
    [Google Scholar]
  44. Ursing J., Brennert D. J., Bercovier H., Fanning G. R., Steigerwaldt A. G., Brault J., Mollaret H. H. ( 1980 ). Yersinia frederiksenii: a new species of Enterobacteriaceae composed of rhamnose-positive strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). . Curr Microbiol 4, 213217. [View Article]
    [Google Scholar]
  45. Verbarg S., Frühling A., Cousin S., Brambilla E., Gronow S., Lünsdorf H., Stackebrandt E. ( 2008 ). Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae . . Curr Microbiol 56, 603608. [View Article] [PubMed]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  47. Whittaker P., Fry F. S., Curtis S. K., Al-Khaldi S. F., Mossoba M. M., Yurawecz M. P., Dunkel V. C. ( 2005 ). Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. . J Agric Food Chem 53, 37353742. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036749-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036749-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed