1887

Abstract

A novel Gram-negative-staining strain, designated 6.2S, was isolated from a soil sample and identified as a biosurfactant producer. Its taxonomic position was investigated using a polyphasic approach. The cells were non-motile, non-spore-forming rods. The organism grew optimally at 30-37 °C, with 0–3 % (w/v) NaCl, and at pH 7.0. Based on 16S rRNA gene sequence analysis, strain 6.2S was found to be a member of the genus and was most closely related to four type species of the genus, showing sequence similarities of 96.8–98.9 %. Partial chaperonin 60 () gene sequence analysis was useful in resolving the phylogenetic relationships between strain 6.2S and closely related taxa, with similarities ranging from 85.5 % (with DSM 11723) to 90.3 % (with CR11 and JCM 21156). The results of DNA–DNA hybridization experiments between the novel strain and its closest relatives gave a DNA–DNA relatedness value of less than 70 %, and consequently confirmed that this new strain did not belong to a previously described species of the genus . The major fatty acids were summed feature 3 (iso-C 2 OH and/or Cω7); iso-C; iso-C 3-OH and C. The G+C content of the genomic DNA was 40.0 mol%. According to its phenotypic and genotypic characteristics and the phylogenetic data, strain 6.2S represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 6.2S ( = CECT 7938 = LMG 26465).

Funding
This study was supported by the:
  • Ministerio de Ciencia y Tecnología (Spain) (Award CTQ2010-21183-C02/01/ppq)
  • Generalitat de Catalunya (Award 2009SGR819)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036707-0
2012-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/3036.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036707-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for Identification of Medical Bacteria, 3rd edn. UK: Cambridge University Press; [View Article]
    [Google Scholar]
  2. Burgos-Díaz C., Pons R., Espuny M. J., Aranda F. J., Teruel J. A., Manresa A., Ortiz A., Marqués A. M. 2011; Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interface Sci 361:195–204 [View Article][PubMed]
    [Google Scholar]
  3. Chapin K. C., Lauderdale T. 2003; Reagents, stains and media: bacteriology. In Manual of Clinical Microbiology, 8th edn. pp. 354–383 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Duan S., Liu Z., Feng X., Zheng K., Cheng L. 2009; Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 47:693–698 [View Article][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  6. Freney J., Hansen W., Ploton C., Meugnier H., Madier S., Bornstein N., Fleurette J. 1987; Septicemia caused by Sphingobacterium multivorum. . J Clin Microbiol 25:1126–1128[PubMed]
    [Google Scholar]
  7. He X., Xiao T., Kuang H., Lan X., Tudahong M., Osman G., Fang C., Rahman E. 2010; Sphingobacterium shayense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:2377–2381 [View Article][PubMed]
    [Google Scholar]
  8. Jorgensen J. H., Turnidge J. D. 2003; Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, 8th edn. pp. 1108–1127 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Kim K. H., Ten L. N., Liu Q. M., Im W. T., Lee S. T. 2006; Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56:2031–2036 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Krieg N. R., Staley J. T., Brown D., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B. 2010; Genus I. Sphingobacterium Yabuuchi, Kaneko, Yano, Moss and Miyoshi 1983, 592VP . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4 pp. 331–339 Edited by Krieg N. R., Staley J. T., Brown D., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B. New York: Springer-Verlag;
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  13. Liu R., Liu H., Zhang C. X., Yang S. Y., Liu X. H., Zhang K. Y., Lai R. 2008; Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58:1458–1462 [View Article][PubMed]
    [Google Scholar]
  14. MacFaddin J. F. 1980 Biochemical Test for Identification of Medical Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Marqués A. M., Pinazo A., Farfán M., Aranda F. J., Teruel J. A., Ortiz A., Manresa A., Espuny M. J. 2009; The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158:110–117 [View Article][PubMed]
    [Google Scholar]
  16. Martínez-Murcia A. J., Antón A. I., Rodríguez-Valera F. 1999; Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. . Int J Syst Bacteriol 49:601–610 [View Article][PubMed]
    [Google Scholar]
  17. Matsuyama H., Katoh H., Ohkushi T., Satoh A., Kawahara K., Yumoto I. 2008; Sphingobacterium kitahiroshimense sp. nov., isolated from soil. Int J Syst Evol Microbiol 58:1576–1579 [View Article][PubMed]
    [Google Scholar]
  18. Mehnaz S., Weselowski B., Lazarovits G. 2007; Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30:519–524 [View Article][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  20. Pochon J., Tardieux P. 1962 Techniques d’Analyse en Microbiologie du sol La Tourelle, France: St. Mandé;
    [Google Scholar]
  21. Rozen S., Skaletsky H. 2000; Primer 3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology pp. 365–386 Edited by Krawetz S., Misener S. Totowa, NJ: Humana Press;
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Schmidt V. S., Wenning M., Scherer S. 2012; Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62:1506–1511[PubMed] [CrossRef]
    [Google Scholar]
  24. Shivaji S., Ray M. K., Shyamala Rao N., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmarcher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [View Article]
    [Google Scholar]
  25. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [View Article][PubMed]
    [Google Scholar]
  26. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [View Article]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  28. Ten L. N., Liu Q. M., Im W. T., Aslam Z., Lee S. T. 2006; Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J Microbiol Biotechnol 16:1728–1733
    [Google Scholar]
  29. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [View Article]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  31. Wei W., Zhou Y., Wang X., Huang X., Lai R. 2008; Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58:2098–2101 [View Article][PubMed]
    [Google Scholar]
  32. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 241–245 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene Publishing and Wiley-Interscience;
    [Google Scholar]
  33. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598 [View Article]
    [Google Scholar]
  34. Zhang J., Zheng J. W., Cho B. C., Hwang C. Y., Fang C., He J., Li S. P. 2012; Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 62:683–687 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036707-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036707-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error