sp. nov., isolated from Arctic marine sediment, and emended description of the genus Free

Abstract

A novel Gram-staining-negative, coccoid, non-motile bacterium, designated strain V1-41, was isolated from a sample of marine sediment collected, at a depth of 200 m, from Kongsfjorden (an inlet on the west coast of Spitsbergen, an island that forms part of the Svalbard archipelago in the Arctic Ocean). The strain formed cream–brown colonies on marine agar. Cells of the novel strain were positive in tests for catalase, oxidase, lysine decarboxylase and ornithine decarboxylase activities but negative for gelatinase and lipase activities. They hydrolysed aesculin, starch and urea, but not casein or DNA. Most of the cellular fatty acids were medium-chain and saturated (37.1 %) or long-chain and unsaturated (27.8 %), with C (37.1 %), Cω7, and summed features 2 (19.3%) and 3 (24.1%) predominating. The major respiratory quinone was Q-8. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified aminophospholipids, four unidentified phospholipids and one other unidentified lipid. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain’s closest known relatives were DSM 15406 (98.5 % sequence similarity) and BL1 (98.3 %). In DNA–DNA hybridizations, however, the levels of relatedness between strain V1-41 and DSM 15406 and between the novel strain and DSM 17589 were found to be only 19 % and 29 %, respectively. Based on these low levels of similarity at the DNA–DNA level and the phenotypic and chemotaxonomic differences from DSM 15406 and DSM 17589, strain V1-41 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is V1-41 ( = CCUG 58690 = KCTC 23013 = NBRC 106171).

Funding
This study was supported by the:
  • National Centre for Antarctic and Ocean Research
  • Department of Biotechnology
  • Indian Council of Scientific and Industrial Research
  • CSIR
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036475-0
2012-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1926.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036475-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package) version 3.5.1. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  7. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  8. Hop H., Pearson T., Hegseth E. N., Kovacs K. M., Wiencke C., Kwasniewski S., Eiane K., Mehlum F., Gulliksen B. other authors 2002; The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208 [View Article]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  11. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  12. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  14. Park S. J., Kang C. H., Nam Y. D., Bae J. W., Park Y. H., Quan Z. X., Moon D. S., Kim H. J., Roh D. H., Rhee S. K. 2006; Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 56:895–898 [View Article][PubMed]
    [Google Scholar]
  15. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [View Article][PubMed]
    [Google Scholar]
  16. Reddy G. S. N., Prakash J. S. S., Vairamani M., Prabhakar S., Matsumoto G. I., Shivaji S. 2002a; Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253–261 [View Article][PubMed]
    [Google Scholar]
  17. Reddy G. S. N., Prakash J. S. S., Matsumoto G. I., Stackebrandt E., Shivaji S. 2002b; Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021 [View Article][PubMed]
    [Google Scholar]
  18. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E. 2003; Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885–1888 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  21. Shivaji S., Ray M. K., Shyamala Rao N., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov.: a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [View Article]
    [Google Scholar]
  22. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5:139–156 [View Article]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Srinivas T. N. R., Nageswara Rao S. S. S., Vishnu Vardhan Reddy P., Pratibha M. S., Sailaja B., Kavya B., Hara Kishore K., Begum Z., Singh S. M., Shivaji S. 2009; Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-alesund, Svalbard, Arctic. Curr Microbiol 59:537–547 [View Article][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Tourova T. P., Antonov A. S. 1988; Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19:333–355 [View Article]
    [Google Scholar]
  27. Wlodarska-Kowalczuk M., Weslawski J. M. 2001; Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Clim Res 18:127–132 [View Article]
    [Google Scholar]
  28. Zobell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036475-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036475-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed