1887

Abstract

Four non-fermenting, rod-shaped, Gram-staining-negative bacterial strains, designated WCC 4512, WS 4555, WCC 4521 and WS 4556, were isolated from raw milk and the dairy environment. Phylogenetic analyses based on 16S rRNA and gene sequences demonstrated the affiliation of the four strains to two distinct clusters within the class , phylum ‘’. Strains WCC 4512 and WS 4555 showed the highest 16S rRNA gene sequence similarity to the type strain of (97.3 and 97.2 %, respectively), whereas strains WCC 4521 and WS 4556 were most closely related to LMG 23401 (97.6 % 16S rRNA gene sequence similarity). The DNA G+C contents of strains WCC 4512 and WCC 4521 were 44.2 and 39.3 mol%, respectively. The major cellular fatty acids and the presence of menaquinone MK-7 as the predominant quinone for both strains WCC 4512 and WCC 4521 supported their affiliation to the genus . DNA–DNA hybridization experiments between strain WCC 4512 and LMG 23402 and between strain WCC 4521 and LMG 23401 revealed DNA relatedness values of 2 % (repetition, 3 %) and 8 % (repetition, 17 %), respectively. On the basis of phenotypic and genetic properties, as well as phylogenetic distinctiveness, it is suggested that the four strains represent two novel species with strain WCC 4512 ( = DSM 22361 = LMG 25272) as the type strain of sp. nov. (WS 4555 is a reference strain of ) and strain WCC 4521 ( = DSM 22362 = LMG 25273) as the type strain of sp. nov. (WS 4556 is a reference strain of ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036327-0
2012-07-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1506.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036327-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Buller N. B. 2004; Bacteria from Fish and other Aquatic Animals: a Practical Identification Manual. Wallingford: CABI publishing.
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. De Ley J. D., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  5. Duan S., Liu Z., Feng X., Zheng K., Cheng L. 2009; Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 47:693–698 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  7. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [View Article]
    [Google Scholar]
  8. He X., Xiao T., Kuang H., Lan X., Tudahong M., Osman G., Fang C., Rahman E. 2010; Sphingobacterium shayense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:2377–2381 [View Article][PubMed]
    [Google Scholar]
  9. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  10. Kim K. H., Ten L. N., Liu Q. M., Im W. T., Lee S. T. 2006; Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56:2031–2036 [View Article][PubMed]
    [Google Scholar]
  11. Liu R., Liu H., Zhang C. X., Yang S. Y., Liu X. H., Zhang K. Y., Lai R. 2008; Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58:1458–1462 [View Article][PubMed]
    [Google Scholar]
  12. Logan N. A., De Vos P. 2009; Genus I. Bacillus . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 3 pp. 21–128 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  13. Ludwig W., Euzéby J., Whitman W. B. 2008 Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes. http://www.bergeys.org/outlines/Bergeys_Vol_4_Outline.pdf
  14. Matsuyama H., Katoh H., Ohkushi T., Satoh A., Kawahara K., Yumoto I. 2008; Sphingobacterium kitahiroshimense sp. nov., isolated from soil. Int J Syst Evol Microbiol 58:1576–1579 [View Article][PubMed]
    [Google Scholar]
  15. Mehnaz S., Weselowski B., Lazarovits G. 2007; Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30:519–524 [View Article][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  18. Murashige T., Skoog F. 1962; A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497 [View Article]
    [Google Scholar]
  19. Schmidt V. S. J., Mayr R., Wenning M., Glöckner J., Busse H. J., Scherer S. 2009; Bavariicoccus seileri gen. nov., sp. nov., isolated from the surface and smear water of German red smear soft cheese. Int J Syst Evol Microbiol 59:2437–2443 [View Article][PubMed]
    [Google Scholar]
  20. Seiler H., Braatz R., Ohmayer G. 1980; Numerical cluster analysis of the coryneform bacteria from activated sludge. Zentralbl Bakteriol Hyg Abt I Orig C 1:357–375
    [Google Scholar]
  21. Shivaji S., Ray M. K., Shyamala Rao N., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [View Article]
    [Google Scholar]
  22. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [View Article][PubMed]
    [Google Scholar]
  23. Sizemore C., Wieland B., Götz F., Hillen W. 1992; Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol 174:3042–3048[PubMed]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:165–177 [View Article][PubMed]
    [Google Scholar]
  26. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [View Article]
    [Google Scholar]
  27. Ten L. N., Liu Q. M., Im W. T., Aslam Z., Lee S. T. 2006; Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J Microbiol Biotechnol 16:1728–1733
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Tindall B. J. 1999; Misunderstanding the Bacteriological Code. Int J Syst Bacteriol 49:1313–1316 [View Article][PubMed]
    [Google Scholar]
  30. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230[PubMed]
    [Google Scholar]
  31. Verbarg S., Frühling A., Cousin S., Brambilla E., Gronow S., Lünsdorf H., Stackebrandt E. 2008; Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae . Curr Microbiol 56:603–608 [View Article][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  33. Wei W., Zhou Y., Wang X., Huang X., Lai R. 2008; Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58:2098–2101 [View Article][PubMed]
    [Google Scholar]
  34. Wenning M., Scherer S., Naumann D. 2008; Infrared spectroscopy in the identification of microorganisms. In Vibrational Spectroscopy for Medical Diagnosis pp. 71–96 Edited by Diem M., Griffith P. R., Chalmers J. M. Chichester: Wiley;
    [Google Scholar]
  35. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33:580–598 [View Article]
    [Google Scholar]
  36. Yoo S. H., Weon H. Y., Jang H. B., Kim B. Y., Kwon S. W., Go S. J., Stackebrandt E. 2007; Sphingobacterium composti sp. nov., isolated from cotton-waste composts. Int J Syst Evol Microbiol 57:1590–1593 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.036327-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036327-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error