1887

Abstract

A Gram-stain-positive, pleomorphic, oxidase-negative, non-motile isolate from the skin of a dog, designated strain 410, was subjected to comprehensive taxonomic characterization. Comparison of the 16S rRNA gene sequences revealed that the novel isolate showed highest similarities to the type strains of , , and (96.1–96.8 %). The quinone system consisted predominantly of MK-8(H) and MK-9(H). The polar lipid profile of strain 410 contained the major compounds diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids and four unidentified glycolipids. The polyamine pattern was composed of the major amines spermidine and spermine. In the fatty acid profile, predominantly straight-chain, saturated and mono-unsaturated fatty acids were detected (Cω9, Cω7, C). These chemotaxonomic traits are in agreement with those reported for representatives of the genus . Strain 410 tested negative for diphtheria toxin. Physiological properties as well as unique traits in the polar lipid profile could be used to distinguish strain 410 from the most closely related species. These data suggest that strain 410 represents a novel species of the genus , for which we propose the name sp. nov. The type strain is 410 ( = DSM 45586 = LMG 26322 = CCUG 60915).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036061-0
2012-09-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2194.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036061-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J.. ( 1997;). Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. . Int J Syst Bacteriol 47:, 270–277. [CrossRef]
    [Google Scholar]
  3. Aravena-Roman M., Spröer C., Sträubler B., Inglis T., Yassin A. F.. ( 2010;). Corynebacterium pilbarense sp. nov., a non-lipophilic corynebacterium isolated from a human ankle aspirate. . Int J Syst Evol Microbiol 60:, 1484–1487. [CrossRef][PubMed]
    [Google Scholar]
  4. Bernard K. A., Wiebe D., Burdz T., Reimer A., Ng B., Singh C., Schindle S., Pacheco A. L.. ( 2010;). Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate. . Int J Syst Evol Microbiol 60:, 874–879. [CrossRef][PubMed]
    [Google Scholar]
  5. Buczolits S., Schumann P., Valens M., Rosselló-Mora R., Busse H.-J.. ( 2008;). Identification of a bacterial strain isolated from the liver of a laboratory mouse as Microbacterium paraoxydans and emended description of the species Microbacterium paraoxydans Laffineur et al. 2003. . Indian J Microbiol 48:, 243–251. [CrossRef]
    [Google Scholar]
  6. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  7. Chen H.-H., Li W.-J., Tang S.-K., Kroppenstedt R. M., Stackebrandt E., Xu L.-H., Jiang C.-L.. ( 2004;). Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. . Int J Syst Evol Microbiol 54:, 779–782. [CrossRef][PubMed]
    [Google Scholar]
  8. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  9. Collins M. D., Jones D.. ( 1981;). The distribution of isoprenoid quinone structural type in bacteria and their taxonomic implications. . Microbiol Rev 45:, 316–354.
    [Google Scholar]
  10. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1982a;). A survey of the structures of mycolic acids in Corynebacterium and related taxa. . J Gen Microbiol 128:, 129–149.[PubMed]
    [Google Scholar]
  11. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1982b;). Fatty acid composition of some mycolic acid-containing coryneform bacteria. . J Gen Microbiol 128:, 2503–2509.[PubMed]
    [Google Scholar]
  12. Collins M. D., Burton R. A., Jones D.. ( 1988;). Corynebacterium amycolatum sp. nov., a new mycolic acid-less Corynebacterium species from human skin. . FEMS Microbiol Lett 49:, 349–352. [CrossRef]
    [Google Scholar]
  13. Collins M. D., Falsen E., Akervall E., Sjöden B., Alvarez A.. ( 1998;). Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids. . Int J Syst Bacteriol 48:, 1449–1454. [CrossRef][PubMed]
    [Google Scholar]
  14. Collins M. D., Hoyles L., Foster G., Falsen E.. ( 2004;). Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica). . Int J Syst Evol Microbiol 54:, 925–928. [CrossRef][PubMed]
    [Google Scholar]
  15. Du Z.-J., Jordan E. M., Rooney A. P., Chen G.-J., Austin B.. ( 2010;). Corynebacterium marinum sp. nov., isolated from coastal sediment. . Int J Syst Evol Microbiol 60:, 1944–1947. [CrossRef][PubMed]
    [Google Scholar]
  16. Engler K. H., Glushkevich T., Mazurova I. K., George R. C., Efstratiou A.. ( 1997;). A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. . J Clin Microbiol 35:, 495–498.[PubMed]
    [Google Scholar]
  17. Felsenstein J.. ( 2009;). phylip (phylogeny inference package) version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  18. Fernández-Garayzábal J. F., Vela A. I., Egido R., Hutson R. A., Lanzarot M. P., Fernández-García M., Collins M. D.. ( 2004;). Corynebacterium ciconiae sp. nov., isolated from the trachea of black storks (Ciconia nigra). . Int J Syst Evol Microbiol 54:, 2191–2195. [CrossRef][PubMed]
    [Google Scholar]
  19. Fudou R., Jojima Y., Seto A., Yamada K., Kimura E., Nakamatsu T., Hiraishi A., Yamanaka S.. ( 2002;). Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. . Int J Syst Evol Microbiol 52:, 1127–1131. [CrossRef][PubMed]
    [Google Scholar]
  20. Funke G., Englert R., Frodl R., Bernard K. A., Stenger S.. ( 2010a;). Corynebacterium canis sp. nov., isolated from a wound infection caused by a dog bite. . Int J Syst Evol Microbiol 60:, 2544–2547. [CrossRef][PubMed]
    [Google Scholar]
  21. Funke G., Frodl R., Bernard K. A.. ( 2010b;). Corynebacterium mustelae sp. nov., isolated from a ferret with lethal sepsis. . Int J Syst Evol Microbiol 60:, 871–873. [CrossRef][PubMed]
    [Google Scholar]
  22. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  23. Hall V., Collins M. D., Hutson R. A., Lawson P. A., Falsen E., Duerden B. I.. ( 2003;). Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. . Int J Syst Evol Microbiol 53:, 1065–1068. [CrossRef][PubMed]
    [Google Scholar]
  24. Hauser D., Popoff M. R., Kiredjian M., Boquet P., Bimet F.. ( 1993;). Polymerase chain reaction assay for diagnosis of potentially toxinogenic Corynebacterium diphtheriae strains: correlation with ADP-ribosylation activity assay. . J Clin Microbiol 31:, 2720–2723.[PubMed]
    [Google Scholar]
  25. Hilbert F., Scherwitzel M., Paulsen P., Szostak M. P.. ( 2010;). Survival of Campylobacter jejuni under conditions of atmospheric oxygen tension with the support of Pseudomonas spp.. Appl Environ Microbiol 76:, 5911–5917. [CrossRef][PubMed]
    [Google Scholar]
  26. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  27. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  28. Kämpfer P., Lodders N., Warfolomeow I., Falsen E., Busse H.-J.. ( 2009;). Corynebacterium lubricantis sp. nov., isolated from a coolant lubricant. . Int J Syst Evol Microbiol 59:, 1112–1115. [CrossRef][PubMed]
    [Google Scholar]
  29. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  30. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. . J Microbiol Methods 5:, 303–310. [CrossRef]
    [Google Scholar]
  31. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  32. Pallen M. J., Hay A. J., Puckey L. H., Efstratiou A.. ( 1994;). Polymerase chain reaction for screening clinical isolates of corynebacteria for the production of diphtheria toxin. . J Clin Pathol 47:, 353–356. [CrossRef][PubMed]
    [Google Scholar]
  33. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85:, 2444–2448. [CrossRef][PubMed]
    [Google Scholar]
  34. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  35. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  38. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  39. Tong J., Liu C., Summanen P. H., Xu H., Finegold S. M.. ( 2010;). Corynebacterium pyruviciproducens sp. nov., a pyruvic acid producer. . Int J Syst Evol Microbiol 60:, 1135–1140. [CrossRef][PubMed]
    [Google Scholar]
  40. Wu C.-Y., Zhuang L., Zhou S. G., Li F.-B., He J.. ( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 61:, 882–887. [CrossRef][PubMed]
    [Google Scholar]
  41. Yassin A. F., Kroppenstedt R. M., Ludwig W.. ( 2003;). Corynebacterium glaucum sp. nov.. Int J Syst Evol Microbiol 53:, 705–709. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036061-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036061-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error