1887

Abstract

Bacterial strains 2APBS1 and 116-2 were isolated from the subsurface of a nuclear legacy waste site where the sediments are co-contaminated with large amounts of acids, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first member of the genus shown to be capable of complete denitrification. Cells of strain 2APBS1 and 116-2 were Gram-negative, non-spore-forming rods, 3–5 µm long and 0.25–0.5 µm in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth of 30 °C and pH 6.5; they were able to tolerate up to 2.0 % NaCl, although growth improved in its absence. Strains 2APBS1 and 116-2 contained fatty acid and quinone (ubiquinone-8; 100 %) profiles that are characteristic features of the genus . Although strains 2APBS1 and 116-2 shared high 16S rRNA gene sequence similarity with LCS2 (>99 %), levels of DNA–DNA relatedness between these strains were substantially below the 70 % threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1 and 116-2 are considered to represent a single novel species of the genus , for which the name sp. nov. is proposed. The type strain is 2APBS1 ( = DSM 23569 = JCM 17641).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035840-0
2012-10-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2457.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035840-0&mimeType=html&fmt=ahah

References

  1. An D. S. , Lee H. G. , Lee S. T. , Im W. T. . ( 2009; ). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59:, 691–694. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bui T. P. , Kim Y. J. , Kim H. , Yang D. C. . ( 2010; ). Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 2935–2939. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  4. De Clercq D. , Van Trappen S. , Cleenwerck I. , Ceustermans A. , Swings J. , Coosemans J. , Ryckeboer J. . ( 2006; ). Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. . Int J Syst Evol Microbiol 56:, 1755–1759. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  6. DeSantis T. Z. Jr , Hugenholtz P. , Keller K. , Brodie E. L. , Larsen N. , Piceno Y. M. , Phan R. , Andersen G. L. . ( 2006; ). nast: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. . Nucleic Acids Res 34: (Web Server issue), W394–W399. [CrossRef] [PubMed]
    [Google Scholar]
  7. Green S. J. , Prakash O. , Gihring T. M. , Akob D. M. , Jasrotia P. , Jardine P. M. , Watson D. B. , Brown S. D. , Palumbo A. V. , Kostka J. E. . ( 2010; ). Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. . Appl Environ Microbiol 76:, 3244–3254. [CrossRef] [PubMed]
    [Google Scholar]
  8. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  9. Im W. T. , Lee S. T. , Yokota A. . ( 2004; ). Rhodanobacter fulvus sp. nov., a β-galactosidase-producing gammaproteobacterium. . J Gen Appl Microbiol 50:, 143–147. [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee C. S. , Kim K. K. , Aslam Z. , Lee S. T. . ( 2007; ). Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. . Int J Syst Evol Microbiol 57:, 1775–1779. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  12. Mahne I. , Tiedje J. M. . ( 1995; ). Criteria and methodology for identifying respiratory denitrifiers. . Appl Environ Microbiol 61:, 1110–1115.[PubMed]
    [Google Scholar]
  13. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  14. Nalin R. , Simonet P. , Vogel T. M. , Normand P. . ( 1999; ). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. . Int J Syst Bacteriol 49:, 19–23. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  16. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI, Inc.
  17. Tamura K. , Nei M. , Kumar S. . ( 2004; ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tindall B. J. , Rosselló-Móra R. , Busse H. J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  20. Van Den Heuvel R. N. , van der Biezen E. , Jetten M. S. , Hefting M. M. , Kartal B. . ( 2010; ). Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community. . Environ Microbiol 12:, 3264–3271. [CrossRef] [PubMed]
    [Google Scholar]
  21. Wang L. , An D. S. , Kim S. G. , Jin F. X. , Lee S. T. , Im W. T. . ( 2011; ). Rhodanobacter panaciterrae sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 61:, 3028–3032. [CrossRef] [PubMed]
    [Google Scholar]
  22. Watson D. B. , Kostka J. E. , Fields M. W. , Jardine P. M. . ( 2004; ). The Oak Ridge Field Research Center Conceptual Model. Oak Ridge, TN:: NABIR Field Research Center;.
    [Google Scholar]
  23. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464 [CrossRef]
    [Google Scholar]
  24. Weon H. Y. , Kim B. Y. , Hong S. B. , Jeon Y. A. , Kwon S. W. , Go S. J. , Koo B. S. . ( 2007; ). Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 57:, 2810–2813. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035840-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035840-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error