1887

Abstract

A Gram-positive, motile, short rod-shaped, orange pigmented bacterium, designated strain IMTB-3094, was isolated from a water sample collected from Tikkar Tal Lake, Haryana, and subjected to detailed polyphasic taxonomic analysis. Strain IMTB-3094 possessed most of the phenotypic and chemotaxonomic properties of the genus and, based on 16S rRNA gene sequence analysis, was assigned to this genus. Strain IMTB-3094 exhibited the highest 16S rRNA gene sequence similarity to MTCC 7759 (99.5 %) followed by MTCC 6414 (99.1 %), MTCC 7750 (98.0 %), MTCC 10851 (98.0 %) and MTCC 7751 (98.0 %). The G+C content of the genomic DNA of strain IMTB-3094 was 53.2 mol% and a DNA–DNA relatedness study confirmed that it represents a novel species. The major fatty acids of strain IMTB-3094 were iso-C (16.1 %), anteiso-C (19.0 %), iso-C (11.9 %), iso-C (9.8 %) and iso-C (12.7 %). The predominant quinones were MK-7 (55.0 %) and MK-6 (26.0 %) with minor amounts of MK-8 (12.0 %). Based on phenotypic, chemotaxonomic and phylogenetic analyses, strain IMTB-3094 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IMTB-3094 ( = MTCC 10958  = JCM 17977).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035790-0
2012-09-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2150.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035790-0&mimeType=html&fmt=ahah

References

  1. Chaturvedi P., Shivaji S.. ( 2006;). Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. . Int J Syst Evol Microbiol 56:, 2765–2770. [CrossRef][PubMed]
    [Google Scholar]
  2. Chaturvedi P., Prabahar V., Manorama R., Pindi P. K., Bhadra B., Begum Z., Shivaji S.. ( 2008;). Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. . Int J Syst Evol Microbiol 58:, 2447–2453. [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Lund B. M., Farrow J. A. E., Schleifer K. H.. ( 1983;). Chemotaxonomic study of an alkalophilic bacterium Exiguobacterium aurantiacum gen. nov., sp. nov.. J Gen Microbiol 129:, 2037–2042.
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Crapart S., Fardeau M. L., Cayol J. L., Thomas P., Sery C., Ollivier B., Combet-Blanc Y.. ( 2007;). Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 57:, 287–292. [CrossRef][PubMed]
    [Google Scholar]
  7. Farrow J. A. E., Wallbanks S., Collins M. D.. ( 1994;). Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. . Int J Syst Bacteriol 44:, 74–82. [CrossRef][PubMed]
    [Google Scholar]
  8. Frühling A., Schumann P., Hippe H., Sträubler B., Stackebrandt E.. ( 2002;). Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov.. Int J Syst Evol Microbiol 52:, 1171–1176. [CrossRef][PubMed]
    [Google Scholar]
  9. Gee J. M., Lund B. M., Metcalf G., Peel J. L.. ( 1980;). Properties of a new group of alkalophilic bacteria. . J Gen Microbiol 117:, 9–17.
    [Google Scholar]
  10. Kim I.-G., Lee M.-H., Jung S.-Y., Song J. J., Oh T.-K., Yoon J.-H.. ( 2005;). Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 885–889. [CrossRef][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  12. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  13. López-Cortés A., Schumann P., Pukall R., Stackebrandt E.. ( 2006;). Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana. . Syst Appl Microbiol 29:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  14. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  15. Mayilraj S., Saha P., Suresh K., Saini H. S.. ( 2006;). Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. . Int J Syst Evol Microbiol 56:, 1657–1661. [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  17. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhard P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Pandey K. K., Mayilraj S., Chakrabarti T.. ( 2002;). Pseudomonas indica sp. nov., a novel butane-utilizing species. . Int J Syst Evol Microbiol 52:, 1559–1567. [CrossRef][PubMed]
    [Google Scholar]
  19. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. ( 1996;). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:, 1088–1092. [CrossRef][PubMed]
    [Google Scholar]
  20. Rodrigues D. F., Goris J., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M.. ( 2006;). Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov.. Extremophiles 10:, 285–294. [CrossRef][PubMed]
    [Google Scholar]
  21. Saha P., Krishnamurthi S., Mayilraj S., Prasad G. S., Bora T. C., Chakrabarti T.. ( 2005;). Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India. . Int J Syst Evol Microbiol 55:, 1491–1495. [CrossRef][PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  23. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  24. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Smith N. R., Gordon R. E., Clark F. E.. ( 1952;). Aerobic spore forming bacteria. U. S. Dep. Agric. Agriculture Monograph, no. 16.
  27. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  29. Tourova T. P., Antonov A. S.. ( 1988;). Identification of microorganisms by rapid DNA–DNA hybridization. . Methods Microbiol 19:, 333–355. [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  31. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  32. Yumoto I., Hishinuma-Narisawa M., Hirota K., Shingyo T., Takebe F., Nodasaka Y., Matsuyama H., Hara I.. ( 2004;). Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. . Int J Syst Evol Microbiol 54:, 2013–2017. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035790-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035790-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error