1887

Abstract

A novel hyperthermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain HB-8, was isolated from the tube of tubeworms collected from the wall of an actively venting sulfide structure on the East Pacific Rise at 13° N. The cells were Gram-negative rods, approximately 1.0–1.5 µm long and 0.5 µm wide. Strain HB-8 grew between 65 and 80 °C (optimum 75 °C), 15 and 35 g NaCl l (optimum 30 g l) and pH 4.5 and 8.5 (optimum pH 6.0). Generation time under optimal conditions was 26 min. Growth occurred under chemolithoautotrophic conditions with H as the energy source and CO as the carbon source. Nitrate and sulfur were used as electron acceptors, with concomitant formation of ammonium or hydrogen sulfide, respectively. The presence of lactate, formate, acetate or tryptone in the culture medium inhibited growth. The G+C content of the genomic DNA was 47.8 mol%. Phylogenetic analysis of the 16S rRNA gene and of the alpha subunit of the ATP citrate lyase of strain HB-8 indicated that this organism formed a novel lineage within the class , equally distant from the type strains of the type species of the three genera that represent the family : ED11/3LLK8, 17S and BSA. The polar lipids of strain HB-8 differed substantially from those of other members of the , and this bacterium produced novel quinones. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, it is proposed that the organism represents a novel genus and species within the family , gen. nov., sp. nov. The type strain of is HB-8 ( = DSM 24425  = JCM 17384).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035642-0
2012-10-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2388.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035642-0&mimeType=html&fmt=ahah

References

  1. Alain K., Rolland S., Crassous P., Lesongeur F., Zbinden M., le Gall C., Godfroy A., Page A., Juniper S. K.. & other authors ( 2003;). Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. . Extremophiles 7:, 361–370. [CrossRef][PubMed]
    [Google Scholar]
  2. Battistuzzi F. U., Feijao A., Hedges S. B.. ( 2004;). A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. . BMC Evol Biol 4:, 44. [CrossRef][PubMed]
    [Google Scholar]
  3. Burggraf S., Olsen G. J., Stetter K. O., Woese C. R.. ( 1992;). A phylogenetic analysis of Aquifex pyrophilus. . Syst Appl Microbiol 15:, 352–356. [CrossRef][PubMed]
    [Google Scholar]
  4. Diamond D.. ( 1993;). Ammonia in brackish or seawater. In QuickChem Automated Ion Analyzer Methods Manual, 31-107-06-01-A. Milwaukee. , WI:: Lachat Instruments;.
  5. Eder W., Huber R.. ( 2002;). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov.. Extremophiles 6:, 309–318. [CrossRef][PubMed]
    [Google Scholar]
  6. Galtier N., Gouy M., Gautier C.. ( 1996;). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. . Comput Appl Biosci 12:, 543–548.[PubMed]
    [Google Scholar]
  7. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K.. ( 2001;). Polyphasic taxonomy. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 43–48. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  8. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A. L.. ( 2002;). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. . Int J Syst Evol Microbiol 52:, 1349–1359. [CrossRef][PubMed]
    [Google Scholar]
  9. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  10. Huber R., Wilharm T., Huber D., Trincone A., Burggraf S., König H., Reinhard R., Rockinger I., Fricke H., Stetter K. O.. ( 1992;). Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. . Syst Appl Microbiol 15:, 340–351. [CrossRef]
    [Google Scholar]
  11. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O.. ( 1998;). Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. . Appl Environ Microbiol 64:, 3576–3583.[PubMed]
    [Google Scholar]
  12. Huber H., Diller S., Horn C., Rachel R.. ( 2002;). Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. . Int J Syst Evol Microbiol 52:, 1859–1865. [CrossRef][PubMed]
    [Google Scholar]
  13. Hügler M., Huber H., Molyneaux S. J., Vetriani C., Sievert S. M.. ( 2007;). Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. . Environ Microbiol 9:, 81–92. [CrossRef][PubMed]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  15. Kawasumi T., Igarashi Y., Kodama T., Minoda Y.. ( 1984;). Hydrogenobacter-thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. . Int J Syst Bacteriol 34:, 5–10. [CrossRef]
    [Google Scholar]
  16. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  17. Le S. Q., Gascuel O.. ( 2008;). An improved general amino acid replacement matrix. . Mol Biol Evol 25:, 1307–1320. [CrossRef][PubMed]
    [Google Scholar]
  18. L’Haridon S., Cilia V., Messner P., Ragúenès G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C.. ( 1998;). Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Bacteriol 48:, 701–711. [CrossRef][PubMed]
    [Google Scholar]
  19. L’Haridon S., Reysenbach A.-L., Tindall B. J., Schönheit P., Banta A., Johnsen U., Schumann P., Gambacorta A., Stackebrandt E., Jeanthon C.. ( 2006;). Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. . Int J Syst Evol Microbiol 56:, 2843–2852. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Miroshnichenko M. L., Bonch-Osmolovskaya E. A.. ( 2006;). Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. . Extremophiles 10:, 85–96. [CrossRef][PubMed]
    [Google Scholar]
  22. Nakagawa S., Nakamura S., Inagaki F., Takai K., Shirai N., Sako Y.. ( 2004;). Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. . Int J Syst Evol Microbiol 54:, 2079–2084. [CrossRef][PubMed]
    [Google Scholar]
  23. Pérez-Rodríguez I., Ricci J., Voordeckers J. W., Starovoytov V., Vetriani C.. ( 2010;). Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 60:, 1182–1186. [CrossRef][PubMed]
    [Google Scholar]
  24. Reysenbach A.-L.. ( 2001a;). Phylum B1. Aquificae phy. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, p. 359. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  25. Reysenbach A.-L.. ( 2001b;). Order I Aquificales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, p. 359. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  26. Stetter K. O., König H., Stackebrandt E.. ( 1983;). Pyrodictium, a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. . Syst Appl Microbiol 4:, 535–551. [CrossRef]
    [Google Scholar]
  27. Stöhr R., Waberski A., Völker H., Tindall B. J., Thomm M.. ( 2001;). Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. . Int J Syst Evol Microbiol 51:, 1853–1862. [CrossRef][PubMed]
    [Google Scholar]
  28. Takai K., Kobayashi H., Nealson K. H., Horikoshi K.. ( 2003a;). Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. . Int J Syst Evol Microbiol 53:, 823–827. [CrossRef][PubMed]
    [Google Scholar]
  29. Takai K., Nakagawa S., Sako Y., Horikoshi K.. ( 2003b;). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. . Int J Syst Evol Microbiol 53:, 1947–1954. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  32. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  33. Vetriani C., Jannasch H. W., MacGregor B. J., Stahl D. A., Reysenbach A.-L.. ( 1999;). Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. . Appl Environ Microbiol 65:, 4375–4384.[PubMed]
    [Google Scholar]
  34. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V.. ( 2004;). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. . Int J Syst Evol Microbiol 54:, 175–181. [CrossRef][PubMed]
    [Google Scholar]
  35. Voordeckers J. W., Do M. H., Hügler M., Ko V., Sievert S. M., Vetriani C.. ( 2008;). Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge. . Extremophiles 12:, 627–640. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035642-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035642-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error