1887

Abstract

A Gram-negative, non-motile, non-spore-forming and rod-shaped bacterial strain, CH15-1, was isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria. Strain CH15-1 grew optimally at pH 7.0 and 30 °C. A phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain CH15-1 belongs to the genus with the similarity range from 92.6–97.4 % and is closely related to YC6267 (97.4 %), TR7-09 (95.4 %), CF5-1 (94.7 %), CC-JY-1 (94.6 %) and HO3-R19 (92.6 %). However, the DNA–DNA hybridization between strain CH15-1 and the closest strain, YC6267, was 8.9–12.9 %. The DNA G+C content was 63.9 mol% compared to YC626, 65.8 mol%. Strain CH15-1 included Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. The major fatty acids (>5 %) were iso-C, iso-C, iso-C, iso-C 3-OH, iso-C and summed feature 9 (iso-Cω9 and/or C 10-methyl). On the basis of phylogenetic, phenotypic and genetic data, strain CH15-1 was classified in the genus as a member of a novel species, for which the name sp. nov. is proposed. The type strain is CH15-1 ( = KCTC 23553 = DSM 24763).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035410-0
2013-02-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/484.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035410-0&mimeType=html&fmt=ahah

References

  1. Aslam Z., Park J. H., Kim S. W., Jeon C. O., Chung Y. R.. ( 2009;). Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov.. Int J Syst Evol Microbiol 59:, 2967–2972. [CrossRef][PubMed]
    [Google Scholar]
  2. Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1995;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  3. Chen F., Shi Z., Wang G.. ( 2012;). Arenimonas metalli sp. nov., isolated from an iron mine. . Int J Syst Evol Microbiol 62:, 1744–1749. [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Gomori G.. ( 1955;). Preparation of buffer for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  7. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  8. Jin L., Kim K. K., Im W. T., Yang H. C., Lee S. T.. ( 2007;). Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. . Int J Syst Evol Microbiol 57:, 1876–1880. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M.. ( 2004;). mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef][PubMed]
    [Google Scholar]
  12. Kwon S. W., Kim B. Y., Weon H. Y., Baek Y. K., Go S. J.. ( 2007;). Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. . Int J Syst Evol Microbiol 57:, 954–958. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  14. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  15. Oh H. M., Ahn C. Y., Lee J. W., Chon T. S., Choi K. H., Park Y. S.. ( 2007;). Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. . Ecol Modell 203:, 109–118. [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  18. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  19. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  22. Young C. C., Kämpfer P., Ho M. J., Busse H. J., Huber B. E., Arun A. B., Shen F. T., Lai W. A., Rekha P. D.. ( 2007;). Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. . Int J Syst Evol Microbiol 57:, 2790–2793. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035410-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035410-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error