1887

Abstract

A polyphasic taxonomic study was carried out on 2C1-b and 2C-21, two strains isolated from sewage flowing into River Geumho in Korea. Cells of the two strains were Gram-negative, non-spore-forming, motile and oval or rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of these two isolates with members of the ; they were most closely related to KCTC 22010, KCTC 12544, KCTC 12583, ATCC 17713 and KACC 11579 showing 16S rRNA gene sequence similarities of 97.4–98.8 % with these strains and shared 100 % similarity with each other. The genomic DNA G+C contents of strains 2C1-b and 2C1-21 were 65.5 and 65.2 mol%, respectively. Phenotypic and chemotaxonomic data [Q-8 as the major ubiquinone; C, summed feature 4 (Cω7 and/or iso-C 2-OH), C cyclo and summed feature 7 (Cω7 and/or ω9 and/or ω12) as major fatty acids] supported the affiliation of strains 2C1-b and 2C-21 to the genus . Based on evidence derived from this polyphasic analysis, it is proposed that strains 2C1-b and 2C1-21 represent a novel species for which the name sp. nov. is proposed; the type strain is 2C1-b ( = KCTC 12768 = JCM 17804).

Funding
This study was supported by the:
  • , Advanced Biomass Research Center
  • , Global Frontier Program
  • , Korean Ministry of Education, Science & Technology
  • , CAER (Center for Aquatic Ecosystem Restoration) of Eco-STAR project
  • , Ministry of the Environment
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035295-0
2012-08-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1779.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035295-0&mimeType=html&fmt=ahah

References

  1. Apajalahti J. H., Salkinoja-Salonen M. S. 1987; Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus . J Bacteriol 169:675–681[PubMed]
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Bates R. G., Bower V. E. 1956; Alkaline solutions for pH control. Anal Chem 28:1322–1324 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146 [CrossRef]
    [Google Scholar]
  8. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  9. Häggblom M. M. 1990; Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol 30:115–141 [CrossRef][PubMed]
    [Google Scholar]
  10. Häggblom M. M. 1992; Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9:29–71[PubMed] [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Im W.-T., Liu Q.-M., Lee K.-J., Kim S.-Y., Lee S.-T., Yi T. H. 2010; Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1565–1569 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim B.-Y., Weon H.-Y., Yoo S.-H., Lee S.-Y., Kwon S.-W., Go S.-J., Stackebrandt E. 2006; Variovorax soli sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 56:2899–2901 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  16. Li D.-Y., Eberspächer J., Wagner B., Kuntzer J., Lingens F. 1991; Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol 57:1920–1928[PubMed]
    [Google Scholar]
  17. Martin-Le Garrec G., Artaud I., Capeillère-Blandin C. 2001; Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. Biochim Biophys Acta 1547:288–301 [CrossRef][PubMed]
    [Google Scholar]
  18. Miwa H., Ahmed I., Yoon J., Yokota A., Fujiwara T. 2008; Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289 [CrossRef][PubMed]
    [Google Scholar]
  19. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  24. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Willems A., De Ley J., Gillis M., Kersters K. 1991; Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Kang S.-J., Oh T.-K. 2006; Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:811–814 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035295-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035295-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error