1887

Abstract

A novel methane-oxidizing bacterium, strain Fw12E-Y, was isolated from floodwater of a rice paddy field in Japan. Cells of strain Fw12E-Y were Gram-negative, motile rods with a single polar flagellum and type I intracytoplasmic membrane arrangement. The strain grew only on methane or methanol as sole carbon and energy source. It was able to grow at 10–40 °C (optimum 30 °C), at pH 5.5–7.0 (optimum 6.5) and with 0–0.1 % (w/w) NaCl (no growth above 0.5 % NaCl). 16S rRNA gene sequence analysis showed that strain Fw12E-Y is related most closely to members of the genus , but at low levels of similarity (95.0–95.4 %). Phylogenetic analysis of and genes indicated that the strain belongs to the genus (97 and 92 % deduced amino acid sequence identities to S1, respectively). The DNA G+C content of strain Fw12E-Y was 57.1 mol%. Chemotaxonomic data regarding the major quinone (MQ-8) and major fatty acids (C and C) also supported its affiliation to the genus . Based on phenotypic, genomic and phylogenetic data, strain Fw12E-Y is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Fw12E-Y ( = JCM 16701 = NBRC 105905 = NCIMB 14606).

Funding
This study was supported by the:
  • Japan Society for the Promotion of Sciences
  • ESPEC Foundation for Global Environment Research and Technology (Charitable Trust)
  • Chubu Science and Technology Center
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035261-0
2012-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1832.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035261-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P. 2005; Order VII. Methylococcales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2B pp. 248–270 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer; [View Article]
    [Google Scholar]
  2. Bowman J. P., Sly L. I., Cox J. M., Hayward A. C. 1990; Methylomonas fodinarum sp. nov. and Methylomonas aurantiaca sp. nov.: two closely related type I obligate methanotrophs. Syst Appl Microbiol 13:279–287 [View Article]
    [Google Scholar]
  3. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I. 1991; Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Ecol 85:15–22 [View Article]
    [Google Scholar]
  4. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [View Article]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Green P. N. 1985; Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Biochem Biophys Res Commun 133:1125–1131 [View Article][PubMed]
    [Google Scholar]
  7. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074[PubMed]
    [Google Scholar]
  8. Dianou D., Ueno C., Ogiso T., Kimura M., Asakawa S. 2012; Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ (in press) [View Article][PubMed]
    [Google Scholar]
  9. Eller G., Stubner S., Frenzel P. 2001; Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198:91–97 [View Article][PubMed]
    [Google Scholar]
  10. Fujie K., Hu H. Y., Tanaka H., Urano K., Saitou K., Katayama A. 1998; Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci Plant Nutr 44:393–404 [View Article]
    [Google Scholar]
  11. Geymonat E., Ferrando L., Tarlera S. E. 2011; Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. Int J Syst Evol Microbiol 61:2568–2572 [View Article][PubMed]
    [Google Scholar]
  12. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [View Article][PubMed]
    [Google Scholar]
  13. Kalyuzhnaya M. G., Khmelenina V. N., Kotelnikova S., Holmquist L., Pedersen K., Trotsenko Y. A. 1999; Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572 [View Article][PubMed]
    [Google Scholar]
  14. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [View Article]
    [Google Scholar]
  15. Leadbetter E. R., Foster J. W. 1958; Studies on some methane-utilizing bacteria. Arch Mikrobiol 30:91–118 [View Article][PubMed]
    [Google Scholar]
  16. McDonald I. R., Kenna E. M., Murrell J. C. 1995; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121[PubMed]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  18. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [View Article]
    [Google Scholar]
  19. Pernthaler J., Glöckner F. O., Schönhuber W., Amann R. 2001; Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol 30:207–226 [View Article]
    [Google Scholar]
  20. Sowers K. R. 1995; Isolation of chromosomal and plasmid DNAs from methanogenic archaea. In Archaea: A Laboratory Manual: Methanogens pp. 369–378 Edited by Sowers K. R., Schreier H. I. New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  22. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477[PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  24. Whittenbury R., Krieg N. R. 1984; Genus II. Methylomonas . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 260–261 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Whittenbury R., Davies S. L., Davey J. F. 1970a; Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61:219–226[PubMed] [CrossRef]
    [Google Scholar]
  26. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970b; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035261-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035261-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error