1887

Abstract

species B has so far only been reported from the oral cavity of dogs, cats and a ferret. In the present study, information from 15 recent isolates from different sources, including African hedgehogs (), banded mongoose (), Moholi bushbabies () and pneumonia of a cat, were compared to five strains investigated previously from bite wounds in humans inflicted by a cat and dog and from gingiva of a cat. gene sequence comparison showed that 17 isolates, including the reference strain (CCUG 19794), had identical sequences, whereas two were closely related and demonstrated 97.9 and 99.6 % similarity to strain CCUG 19794, respectively; the type strain of was the most closely related strain, with 92.3 % similarity. This is within the mean range (76–100 %) of gene sequence similarity between species of the same genus within the family . 16S rRNA gene sequencing of four strains selected based on sequence comparison showed at least 99.7 % similarity between strains of species B, with 96.2 % similarity to the type strain of the closest related species ( ), indicating that species B should have separate species status. Separate species status was also documented when sequence comparisons were converted to a genome similarity of 93.7 % within species B and 59.0 % to the type strain of the closest related species ( ). Based on analysis of the phylogenetic and phenotypic data, and since most isolates originate from the oral cavities of a diverse group of animals, it is suggested that these bacteria be classified as sp. nov.; the type strain is P683 ( = CCUG 19794 = CCM 7950 = strain 23193 = MCCM 00102), obtained from a cat. Previous reports of the type strain have shown ubiquinone-8, demethylmenaquinone-8 and menaquinone-8 as the major quinones. Polyamines in the type strain were reported as diaminopropane, putrescine, cadaverine, -norspermidine, spermidine and spermine in a previous investigation, and the major fatty acids of the type strain were reported to be C, Cω7 and C, with minor amounts of C and Cω9. The DNA G+C content of the type strain has been reported to be 40.0 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035246-0
2012-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1396.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035246-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Angen O., Ahrens P., Kuhnert P., Christensen H., Mutters R.. ( 2003;). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedis ‘Haemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. . Int J Syst Evol Microbiol 53:, 1449–1456. [CrossRef][PubMed]
    [Google Scholar]
  3. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L.. ( 2006;). GenBank. . Nucleic Acids Res 34: (Database issue), D16–D20. [CrossRef][PubMed]
    [Google Scholar]
  4. Biberstein E. L., White D. C.. ( 1969;). A proposal for the establishment of two new Haemophilus species. . J Med Microbiol 2:, 75–78. [CrossRef][PubMed]
    [Google Scholar]
  5. Bisgaard M.. ( 1993;). Ecology and significance of Pasteurellaceae in animals. . Zentralbl Bakteriol 279:, 7–26. [CrossRef][PubMed]
    [Google Scholar]
  6. Bisgaard M., Houghton S. B., Mutters R., Stenzel A.. ( 1991;). Reclassification of German, British and Dutch isolates of so-called Pasteurella multocida obtained from pneumonic calf lungs. . Vet Microbiol 26:, 115–124. [CrossRef][PubMed]
    [Google Scholar]
  7. Bisgaard M., Christensen J. P., Bojesen A. M., Christensen H.. ( 2007;). Avibacterium endocarditidis sp. nov., isolated from valvular endocarditis in chickens. . Int J Syst Evol Microbiol 57:, 1729–1734. [CrossRef][PubMed]
    [Google Scholar]
  8. Bisgaard M., Petersen A., Christensen H.. ( 2008;). Investigations on the existence of major phylogenetic lines within Pasteurella multocida as demonstrated by MLSA, rpoB sequencing and 16S rRNA based PCR. . Poster abstract. International Pasteurellaceae Society Conference 2008, Sorrento.
    [Google Scholar]
  9. Blackall P. J., Christensen H., Beckenham T., Blackall L. L., Bisgaard M.. ( 2005;). Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov.. Int J Syst Evol Microbiol 55:, 353–362. [CrossRef][PubMed]
    [Google Scholar]
  10. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  11. Christensen H., Bisgaard M.. ( 2006;). The genus Pasteurella. . In The Prokaryotes, , 3rd edn., vol. 6, pp. 1062–1090. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  12. Christensen H., Bisgaard M., Angen Ø., Olsen J. E.. ( 2002;). Final classification of Bisgaard taxon 9 as Actinobacillus arthritidis sp. nov. and recognition of a novel genomospecies for equine strains of Actinobacillus lignieresii. . Int J Syst Evol Microbiol 52:, 1239–1246. [CrossRef][PubMed]
    [Google Scholar]
  13. Christensen H., Bisgaard M., Bojesen A. M., Mutters R., Olsen J. E.. ( 2003;). Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov.. Int J Syst Evol Microbiol 53:, 275–287. [CrossRef][PubMed]
    [Google Scholar]
  14. Christensen H., Bisgaard M., Angen Ø., Frederiksen W., Olsen J. E.. ( 2005;). Characterization of sucrose-negative Pasteurella multocida variants, including isolates from large-cat bite wounds. . J Clin Microbiol 43:, 259–270. [CrossRef][PubMed]
    [Google Scholar]
  15. Christensen H., Kuhnert P., Busse H.-J., Frederiksen W. C., Bisgaard M.. ( 2007;). Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. . Int J Syst Evol Microbiol 57:, 166–178. [CrossRef][PubMed]
    [Google Scholar]
  16. Christie R., Atkins N. E., Munch-Petersen E.. ( 1944;). A note on a lytic phenomenon shown by group B streptococci. . Aust J Exp Biol Med Sci 22:, 197–200. [CrossRef]
    [Google Scholar]
  17. Davies R. L.. ( 2004;). Genetic diversity among Pasteurella multocida strains of avian, bovine, ovine and porcine origin from England and Wales by comparative sequence analysis of the 16S rRNA gene. . Microbiology 150:, 4199–4210. [CrossRef][PubMed]
    [Google Scholar]
  18. De Ley J., Mannheim W., Mutters R., Piechulla K., Tytgat R., Segers P., Bisgaard M., Frederiksen W., Hinz K.-H., Vanhoucke M.. ( 1990;). Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae. . Int J Syst Bacteriol 40:, 126–137. [CrossRef][PubMed]
    [Google Scholar]
  19. Dewhirst F. E., Paster B. J., Olsen I., Fraser G. J.. ( 1993;). Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences. . Zentralbl Bakteriol 279:, 35–44. [CrossRef][PubMed]
    [Google Scholar]
  20. Engelhard E., Kroppenstedt R. M., Mutters R., Mannheim W.. ( 1991;). Carbohydrate patterns, cellular lipoquinones, fatty acids and phospholipids of the genus Pasteurella sensu stricto. . Med Microbiol Immunol (Berl) 180:, 79–92. [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein, J. (1995). phylip (phylogeny inference package) version 3.5c. Department of Genetics, University of Washington, Seattle, USA.
  22. Kainz A., Lubitz W., Busse H. J.. ( 2000;). Genomic fingerprints, ARDRA profiles and quinone systems for classification of Pasteurella sensu stricto. . Syst Appl Microbiol 23:, 494–503. [CrossRef][PubMed]
    [Google Scholar]
  23. Korczak B., Christensen H., Emler S., Frey J., Kuhnert P.. ( 2004;). Phylogeny of the family Pasteurellaceae based on rpoB sequences. . Int J Syst Evol Microbiol 54:, 1393–1399. [CrossRef][PubMed]
    [Google Scholar]
  24. Kroppenstedt R. M., Mannheim W.. ( 1989;). Lipoquinones in members of the family Pasteurellaceae. . Int J Syst Bacteriol 39:, 304–308. [CrossRef]
    [Google Scholar]
  25. Kuhnert P., Korczak B. M.. ( 2006;). Prediction of whole-genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). . Microbiology 152:, 2537–2548. [CrossRef][PubMed]
    [Google Scholar]
  26. Mollet C., Drancourt M., Raoult D.. ( 1997;). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26:, 1005–1011. [CrossRef][PubMed]
    [Google Scholar]
  27. Mühldorfer K., Schwarz S., Fickel J., Wibbelt G., Speck S.. ( 2011;). Genetic diversity of Pasteurella species isolated from European vespertilionid bats. . Vet Microbiol 149:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  28. Mutters R., Piechulla K., Hinz K.-H., Mannheim W.. ( 1985a;). Pasteurella avium (Hinz and Kunjara 1977) comb. nov. and Pasteurella volantium sp. nov.. Int J Syst Bacteriol 35:, 5–9. [CrossRef]
    [Google Scholar]
  29. Mutters R., Ihm P., Pohl S., Frederiksen W., Mannheim W.. ( 1985b;). Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. . Int J Syst Bacteriol 35:, 309–322. [CrossRef]
    [Google Scholar]
  30. Mutters R., Mannheim W., Bisgaard M.. ( 1989;). Taxonomy of the group. . In Pasteurella and Pasteurellosis, pp. 3–34. Edited by Adlam C., Rutter J. M... London:: Academic Press;.
    [Google Scholar]
  31. Mutters R., Christensen H., Bisgaard M.. ( 2005;). Genus Pasteurella Trevisan 1887, 94AL Nom. Cons. Opin. 13, Jud. Comm. 1954. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., pp. 857–866. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G... New York:: Springer-Verlag;.
    [Google Scholar]
  32. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R.. ( 1994;). fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  33. Pohl S.. ( 1981;). DNA relatedness among members of Haemophilus, Pasteurella and Actinobacillus. . In Haemophilus, Pasteurella and Actinobacillus, pp. 245–253. Edited by Kilian M., Frederiksen W., Biberstein E. L... London:: Academic Press;.
    [Google Scholar]
  34. Rice P., Longden I., Bleasby A.. ( 2000;). EMBOSS: the European Molecular Biology Open Software Suite. . Trends Genet 16:, 276–277. [CrossRef][PubMed]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  36. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  37. Trevisan V.. ( 1887;). Sul micrococco della rabbia e sulla possibilità di riconoscere durante il periode d’incubazione, dall’esame del sangue della persona moricata, se ha contratta l’infezione rabbica. . Rend Ist Lombardo Accad Sci Lett Sez (ser. 2) 20:, 88–105 (in Italian).
    [Google Scholar]
  38. Trüper H. G., De’Clari L.. ( 1997;). Taxonomic note: necessary correction of specific epithets formed as substantives (nouns) “in apposition”. . Int J Syst Bacteriol 47:, 908–909. [CrossRef]
    [Google Scholar]
  39. Zeigler D. R.. ( 2003;). Gene sequences useful for predicting relatedness of whole genomes in bacteria. . Int J Syst Evol Microbiol 53:, 1893–1900. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035246-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035246-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error