1887

Abstract

The taxonomy of strain CCUG 55240, a Gram-staining-positive, aerobic, endospore-forming bacterium that was isolated from a paper mill, was investigated using a polyphasic approach. In phylogenetic analysis based on 16S rRNA gene sequences, the novel strain was grouped with established members of the genus and appeared most closely related to the type strains of (93.7 % sequence similarity), (93.7 %) and (93.6 %). The levels of 16S rRNA gene sequence similarity with other species of the genus , including the type species of the genus, , were all <93.5 %. The fatty acid profile of strain CCUG 55240, which showed a predominance of iso- and anteiso-branched fatty acids, supported the allocation of the strain to the genus . Unusually high amounts of some iso-branched fatty acids, especially iso-C and iso-C, allowed differentiation of strain CCUG 55240 from the most closely related species of the genus . The diagnostic diamino acid found in the cell-wall peptidoglycan was -diaminopimelic acid. The predominant menaquinone was MK-7. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unknown glycolipid, an unknown aminophosphoglycolipid and an unknown phospholipid. Spermidine was the major polyamine. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain CCUG 55240 from the most closely related recognized species. On the basis of the phylogenetic, phenotypic and molecular evidence, strain CCUG 55240 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the novel species is CCUG 55240 ( = CCM 7759).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035154-0
2012-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1342.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035154-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H. J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J. 1997; Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium and Tsukamurella . Int J Syst Bacteriol 47:270–277 [View Article]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  4. Baik K. S., Lim C. H., Choe H. N., Kim E. M., Seong C. N. 2011; Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61:529–534 [View Article][PubMed]
    [Google Scholar]
  5. Enright M. R., McInerney J. O., Griffin C. T. 2003; Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov.. Int J Syst Evol Microbiol 53:435–441 [View Article][PubMed]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Hamana K., Akiba T., Uchino F., Matsuzaki S. 1989; Distribution of spermine in bacilli and lactic acid bacteria. Can J Microbiol 35:450–455 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P. 1990; Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 273:164–172 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  10. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  11. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  13. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J.-S. 2011; Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 61:160–164 [View Article][PubMed]
    [Google Scholar]
  14. Kim D. S., Bae C.-Y., Jeon J.-J., Chun S.-J., Oh H. W., Hong S. G., Baek K.-S., Moon E. Y., Bae K. S. 2004; Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54:2031–2035 [View Article][PubMed]
    [Google Scholar]
  15. Kuroshima K.-I., Sakane T., Takata R., Yokota A. 1996; Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus . Int J Syst Bacteriol 46:76–80 [View Article]
    [Google Scholar]
  16. Lee J.-S., Lee K. C., Chang Y.-H., Hong S. G., Oh H. W., Pyun Y.-R., Bae K. S. 2002; Paenibacillus daejeonensis sp. nov., a novel alkaliphilic bacterium from soil. Int J Syst Evol Microbiol 52:2107–2111 [View Article][PubMed]
    [Google Scholar]
  17. Lee J.-S., Pyun Y.-R., Bae K. S. 2004; Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov.. Int J Syst Evol Microbiol 54:929–933 [View Article][PubMed]
    [Google Scholar]
  18. Lee J. C., Kim C. J., Yoon K. H. 2011; Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49:617–621 [View Article][PubMed]
    [Google Scholar]
  19. Lim J.-M., Jeon C.-O., Lee J.-C., Xu L.-H., Jiang C.-L., Kim C.-J. 2006; Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu Province in China. Int J Syst Evol Microbiol 56:2131–2134 [View Article][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  21. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  22. Park D.-S., Jeong W.-J., Lee K. H., Oh H.-W., Kim B.-C., Bae K. S., Park H.-Y. 2009; Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis . Int J Syst Evol Microbiol 59:1342–1347 [View Article][PubMed]
    [Google Scholar]
  23. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  24. Saha P., Krishnamurthi S., Bhattacharya A., Sharma R., Chakrabarti T. 2010; Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 60:422–428 [View Article][PubMed]
    [Google Scholar]
  25. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc;
  26. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [View Article]
    [Google Scholar]
  27. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  28. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  29. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  30. Urdiain M., López-López A., Gonzalo C., Busse H.-J., Langer S., Kämpfer P., Rosselló-Móra R. 2008; Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense . Syst Appl Microbiol 31:339–351 [View Article][PubMed]
    [Google Scholar]
  31. Yoon J.-H., Seo W.-T., Shin Y. K., Kho Y. H., Kang K. H., Park Y.-H. 2002; Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 52:415–421[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035154-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035154-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error