1887

Abstract

A moderately haloalkaliphilic methylotrophic bacterium possessing the ribulose monophosphate pathway for carbon assimilation, designated MPL, was isolated from Lonar Lake sediment microcosms that were oxidizing methane for two weeks. The isolate utilized methanol and was an aerobic, Gram-negative, asporogenous, motile, short rod that multiplied by binary fission. The isolate required NaHCO or NaCl for growth and, although not auxotrophic for vitamin B, had enhanced growth with vitamin B. Optimal growth occurred with 0.5–2 % (w/v) NaCl, at 28–30 °C and at pH 9.0–10.0. The cellular fatty acid profile consisted primarily of straight-chain saturated C and unsaturated Cω7 and Cω7. The major ubiquinone was Q-8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Cells accumulated ectoine as the main compatible solute. The DNA G+C content was 50.0 mol%. The isolate exhibited 94.0–95.4 % 16S rRNA gene sequence similarity with the type strains of methylotrophs belonging to the genus and 31 % DNA–DNA relatedness with the reference strain, VKM B-2251. It is proposed that strain MPL represents a novel species, sp. nov. (type strain MPL = VKM B-2684 = MCC 1002).

Funding
This study was supported by the:
  • , Indian Council of Medical Research, Government of India
  • , British Council UK–India Education and Research Initiative , (Award SA07-061)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.035089-0
2012-07-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1613.html?itemId=/content/journal/ijsem/10.1099/ijs.0.035089-0&mimeType=html&fmt=ahah

References

  1. Antony C. P., Kumaresan D., Ferrando L., Boden R., Moussard H., Scavino A. F., Shouche Y. S., Murrell J. C. 2010; Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480 [CrossRef][PubMed]
    [Google Scholar]
  2. Boden R. 2012; Emended description of the genus Methylophaga Janvier et al. 1985. Int J Syst Evol Microbiol 62:1644–1646[PubMed] [CrossRef]
    [Google Scholar]
  3. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  5. Doronina N. V., Braus-Stromeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans gen. nov., sp. nov.. Syst Appl Microbiol 18:92–98 [CrossRef]
    [Google Scholar]
  6. Doronina N. V., Darmaeva T. D., Trotsenko Y. A. 2003; Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int J Syst Evol Microbiol 53:223–229 [CrossRef][PubMed]
    [Google Scholar]
  7. Doronina N. V., Lee Ts. D., Ivanova E. G., Trotsenko Yu. A. 2005; Methylophaga murata sp. nov.: a haloalkaliphilic aerobic methylotroph from deteriorating marble. Microbiology (English translation of Mikrobiologiia) 74:440–447
    [Google Scholar]
  8. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Govorukhina N. I., Trotsenko Y. A. 1989; Phospholipid composition of methylotrophic bacteria. Microbiology (English translation of Mikrobiologiia) 58:318–323
    [Google Scholar]
  10. Grant W. D., Jones B. E. 2000; Alkaline environments. In Encylopedia of Microbiology, 2nd edn. vol. 1 pp. 126–133 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  11. Joshi A. A., Kanekar P. P., Kelkar A. S., Shouche Y. S., Vani A. A., Borgave S. B., Sarnaik S. S. 2008; Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55:163–172 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaluzhnaya M., Khmelenina V., Eshinimaev B., Suzina N., Nikitin D., Solonin A., Lin J. L., McDonald I., Murrell C., Trotsenko Y. 2001; Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp. nov.. Syst Appl Microbiol 24:166–176 [CrossRef][PubMed]
    [Google Scholar]
  13. Kelly D. P., Wood A. P. 1998; Microbes of the sulfur cycle. In Techniques in Microbial Ecology pp. 31–57 Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Sayler G. New York: Oxford University Press;
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. S. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley & Sons;
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Marmur J. A., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  18. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef][PubMed]
    [Google Scholar]
  19. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef][PubMed]
    [Google Scholar]
  20. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef][PubMed]
    [Google Scholar]
  21. Surakasi V. P., Wani A. A., Shouche Y. S., Ranade D. R. 2007; Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp.. Microb Ecol 54:697–704 [CrossRef][PubMed]
    [Google Scholar]
  22. Trotsenko Y. A., Khmelenina V. N. 2002; [The biology and osmoadaptation of haloalkaliphilic methanotrophs]. Mikrobiologiia 71:149–159 (in Russian) [PubMed]
    [Google Scholar]
  23. Trotsenko Y. A., Doronina N. V., Govorukhina N. I. 1986; Metabolism of non-motile obligately methylotrophic bacteria. FEMS Microbiol Lett 33:293–297 [CrossRef]
    [Google Scholar]
  24. Tuovinen O. H., Kelly D. P. 1973; Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14 CO 2 -fixation and iron oxidation as measures of growth. Arch Mikrobiol 88:285–298 [CrossRef][PubMed]
    [Google Scholar]
  25. Urakami T., Komagata K. 1987; Cellular fatty acid composition with special reference to the existence of hydroxy fatty acids in gram-negative methanol, methane and methylamine-utilizing bacteria. J Gen Appl Microbiol 33:135–165 [CrossRef]
    [Google Scholar]
  26. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Microbiology (English translation of Mikrobiologiia) 68:503–521
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.035089-0
Loading
/content/journal/ijsem/10.1099/ijs.0.035089-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error