1887

Abstract

Six obligately anaerobic bacterial isolates (195, CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3–1 µm in diameter and 0.1–0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B was omitted from the medium. Addition of sterile cell-free supernatant of -containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15–35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195 and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic characteristics, the organohalide-respiring isolates represent a new genus and species, for which the name gen. nov., sp. nov. is proposed. Isolates BAV1 ( = ATCC BAA-2100  = JCM 16839  = KCTC 5957), FL2 ( = ATCC BAA-2098  = DSM 23585  = JCM 16840  = KCTC 5959), GT ( = ATCC BAA-2099  = JCM 16841  = KCTC 5958), CBDB1, 195 ( = ATCC BAA-2266  = KCTC 15142) and VS are considered strains of , with strain 195 as the type strain. The new class classis nov., order ord. nov. and family fam. nov. are described to accommodate the new taxon.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034926-0
2013-02-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/625.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034926-0&mimeType=html&fmt=ahah

References

  1. Adrian L. , Szewzyk U. , Wecke J. , Görisch H. . ( 2000; ). Bacterial dehalorespiration with chlorinated benzenes. . Nature 408:, 580–583. [CrossRef] [PubMed]
    [Google Scholar]
  2. Adrian L. , Hansen S. K. , Fung J. M. , Görisch H. , Zinder S. H. . ( 2007; ). Growth of Dehalococcoides strains with chlorophenols as electron acceptors. . Environ Sci Technol 41:, 2318–2323. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amos B. K. , Ritalahti K. M. , Cruz-Garcia C. , Padilla-Crespo E. , Löffler F. E. . ( 2008; ). Oxygen effect on Dehalococcoides viability and biomarker quantification. . Environ Sci Technol 42:, 5718–5726. [CrossRef] [PubMed]
    [Google Scholar]
  4. Amos B. K. , Suchomel E. J. , Pennell K. D. , Löffler F. E. . ( 2009; ). Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution. . Environ Sci Technol 43:, 1977–1985. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cheng D. , He J. . ( 2009; ). Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. . Appl Environ Microbiol 75:, 5910–5918. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cupples A. M. , Spormann A. M. , McCarty P. L. . ( 2003; ). Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. . Appl Environ Microbiol 69:, 953–959. [CrossRef] [PubMed]
    [Google Scholar]
  7. de Jong E. , Field J. A. , Spinnler H.-E. , Wijnberg J. B. P. A. , de Bont J. A. M. . ( 1994; ). Significant biogenesis of chlorinated aromatics by fungi in natural environments. . Appl Environ Microbiol 60:, 264–270.[PubMed]
    [Google Scholar]
  8. Duhamel M. , Mo K. , Edwards E. A. . ( 2004; ). Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. . Appl Environ Microbiol 70:, 5538–5545. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ehrenreich A. , Widdel F. . ( 1994; ). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. . Appl Environ Microbiol 60:, 4517–4526.[PubMed]
    [Google Scholar]
  10. Goris J. , Konstantinidis K. T. , Klappenbach J. A. , Coenye T. , Vandamme P. , Tiedje J. M. . ( 2007; ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gribble G. W. . ( 2003; ). The diversity of naturally produced organohalogens. . Chemosphere 52:, 289–297. [CrossRef] [PubMed]
    [Google Scholar]
  12. He J. , Sung Y. , Dollhopf M. E. , Fathepure B. Z. , Tiedje J. M. , Löffler F. E. . ( 2002; ). Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. . Environ Sci Technol 36:, 3945–3952. [CrossRef] [PubMed]
    [Google Scholar]
  13. He J. , Ritalahti K. M. , Yang K.-L. , Koenigsberg S. S. , Löffler F. E. . ( 2003; ). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. . Nature 424:, 62–65. [CrossRef] [PubMed]
    [Google Scholar]
  14. He J. , Sung Y. , Krajmalnik-Brown R. , Ritalahti K. M. , Löffler F. E. . ( 2005; ). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. . Environ Microbiol 7:, 1442–1450. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hendrickson E. R. , Payne J. A. , Young R. M. , Starr M. G. , Perry M. P. , Fahnestock S. , Ellis D. E. , Ebersole R. C. . ( 2002; ). Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. . Appl Environ Microbiol 68:, 485–495. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hoekstra E. J. , de Leer E. W. B. , Brinkman U. A. Th. . ( 1999; ). Findings supporting the natural formation of trichloroacetic acid in soil. . Chemosphere 38:, 2875–2883. [CrossRef]
    [Google Scholar]
  17. Hug L. A. , Salehi M. , Nuin P. , Tillier E. R. , Edwards E. A. . ( 2011; ). Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp.. Appl Environ Microbiol 77:, 5361–5369. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hugenholtz P. , Stackebrandt E. . ( 2004; ). Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). . Int J Syst Evol Microbiol 54:, 2049–2051. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jayachandran G. , Görisch H. , Adrian L. . ( 2003; ). Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. . Arch Microbiol 180:, 411–416. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kandler O. . ( 1993; ). Cell wall biochemistry and three-domain concept of life. . Syst Appl Microbiol 16:, 501–509. [CrossRef]
    [Google Scholar]
  21. Kittelmann S. , Friedrich M. W. . ( 2008; ). Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. . Environ Microbiol 10:, 31–46.[PubMed] [CrossRef]
    [Google Scholar]
  22. Konstantinidis K. T. , Ramette A. , Tiedje J. M. . ( 2006; ). The bacterial species definition in the genomic era. . Philos Trans R Soc Lond B Biol Sci 361:, 1929–1940. [CrossRef] [PubMed]
    [Google Scholar]
  23. Krzmarzick M. J. , Crary B. B. , Harding J. J. , Oyerinde O. O. , Leri A. C. , Myneni S. C. , Novak P. J. . ( 2012; ). Natural niche for organohalide-respiring Chloroflexi. . Appl Environ Microbiol 78:, 393–401. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kube M. , Beck A. , Zinder S. H. , Kuhl H. , Reinhardt R. , Adrian L. . ( 2005; ). Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. . Nat Biotechnol 23:, 1269–1273. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kubitschek H. E. . ( 1990; ). Cell volume increase in Escherichia coli after shifts to richer media. . J Bacteriol 172:, 94–101.[PubMed]
    [Google Scholar]
  26. Lee P. K. , Cheng D. , Hu P. , West K. A. , Dick G. J. , Brodie E. L. , Andersen G. L. , Zinder S. H. , He J. , Alvarez-Cohen L. . ( 2011; ). Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. . ISME J 5:, 1014–1024. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lendvay J. M. , Löffler F. E. , Dollhopf M. , Aiello M. R. , Daniels G. , Fathepure B. Z. , Gebhard M. , Heine R. , Helton R. . & other authors ( 2003; ). Bioreactive barriers: bioaugmentation and biostimulation for chlorinated solvent remediation. . Environ Sci Technol 37:, 1422–1431. [CrossRef]
    [Google Scholar]
  28. Löffler F. E. , Edwards E. A. . ( 2006; ). Harnessing microbial activities for environmental cleanup. . Curr Opin Biotechnol 17:, 274–284. [CrossRef] [PubMed]
    [Google Scholar]
  29. Löffler F. E. , Tiedje J. M. , Sanford R. A. . ( 1999; ). Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. . Appl Environ Microbiol 65:, 4049–4056.[PubMed]
    [Google Scholar]
  30. Löffler F. E. , Sanford R. A. , Ritalahti K. M. . ( 2005; ). Enrichment, cultivation, and detection of reductively dechlorinating bacteria. . Methods Enzymol 397:, 77–111. [CrossRef] [PubMed]
    [Google Scholar]
  31. Löffler F. E. , Ritalahti K. M. , Zinder S. H. . ( 2013; ). Dehalococcoides and reductive dechlorination of chlorinated solvents. . In Bioaugmentation for Groundwater Remediation (SERDP ESTCP Remediation Technology, vol. 5), pp. 39–88. Edited by Stroo H. F. , Leeson A. , Ward C. H. . . New York:: Springer;.
    [Google Scholar]
  32. Marco-Urrea E. , Nijenhuis I. , Adrian L. . ( 2011; ). Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. . Environ Sci Technol 45:, 6216. [CrossRef] [PubMed]
    [Google Scholar]
  33. May H. D. , Miller G. S. , Kjellerup B. V. , Sowers K. R. . ( 2008; ). Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. . Appl Environ Microbiol 74:, 2089–2094. [CrossRef] [PubMed]
    [Google Scholar]
  34. Maymó-Gatell X. , Chien Y.-T. , Gossett J. M. , Zinder S. H. . ( 1997; ). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. . Science 276:, 1568–1571. [CrossRef] [PubMed]
    [Google Scholar]
  35. McMurdie P. J. , Behrens S. F. , Müller J. A. , Göke J. , Ritalahti K. M. , Wagner R. , Goltsman E. , Lapidus A. , Holmes S. . & other authors ( 2009; ). Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides . . PLoS Genet 5:, e1000714. [CrossRef] [PubMed]
    [Google Scholar]
  36. Moe W. M. , Yan J. , Nobre M. F. , da Costa M. S. , Rainey F. A. . ( 2009; ). Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. . Int J Syst Evol Microbiol 59:, 2692–2697. [CrossRef] [PubMed]
    [Google Scholar]
  37. Moench T. T. , Zeikus J. G. . ( 1983; ). An improved preparation method for a titanium (III) media reductant. . J Microbiol Methods 1:, 199–202. [CrossRef]
    [Google Scholar]
  38. Morris R. M. , Sowell S. , Barofsky D. , Zinder S. H. , Richardson R. E. . ( 2006; ). Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes . . Environ Microbiol 8:, 1499–1509. [CrossRef] [PubMed]
    [Google Scholar]
  39. Müller J. A. , Rosner B. M. , Von Abendroth G. , Meshulam-Simon G. , McCarty P. L. , Spormann A. M. . ( 2004; ). Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. . Appl Environ Microbiol 70:, 4880–4888. [CrossRef] [PubMed]
    [Google Scholar]
  40. Öberg G. . ( 2002; ). The natural chlorine cycle – fitting the scattered pieces. . Appl Microbiol Biotechnol 58:, 565–581. [CrossRef] [PubMed]
    [Google Scholar]
  41. Rappé M. S. , Connon S. A. , Vergin K. L. , Giovannoni S. J. . ( 2002; ). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. . Nature 418:, 630–633. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ritalahti K. M. , Amos B. K. , Sung Y. , Wu Q. , Koenigsberg S. S. , Löffler F. E. . ( 2006; ). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. . Appl Environ Microbiol 72:, 2765–2774. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rosner B. M. , McCarty P. L. , Spormann A. M. . ( 1997; ). In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. . Appl Environ Microbiol 63:, 4139–4144.[PubMed]
    [Google Scholar]
  44. Schink B. . ( 2006; ). Microbially driven redox reactions in anoxic environments: pathways, energetics, and biochemical consequences. . Eng Life Sci 6:, 228–233. [CrossRef]
    [Google Scholar]
  45. Seshadri R. , Adrian L. , Fouts D. E. , Eisen J. A. , Phillippy A. M. , Methe B. A. , Ward N. L. , Nelson W. C. , Deboy R. T. . & other authors ( 2005; ). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes . . Science 307:, 105–108. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sung Y. , Ritalahti K. M. , Apkarian R. P. , Löffler F. E. . ( 2006; ). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. . Appl Environ Microbiol 72:, 1980–1987. [CrossRef] [PubMed]
    [Google Scholar]
  47. White D. C. , Geyer R. , Peacock A. D. , Hedrick D. B. , Koenigsberg S. S. , Sung Y. , He J. , Löffler F. E. . ( 2005; ). Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. . Appl Environ Microbiol 71:, 8426–8433. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wolin E. A. , Wolfe R. S. , Wolin M. J. . ( 1964; ). Viologen dye inhibition of methane formation by Methanobacillus omelianskii . . J Bacteriol 87:, 993–998.[PubMed]
    [Google Scholar]
  49. Yamada T. , Sekiguchi Y. , Hanada S. , Imachi H. , Ohashi A. , Harada H. , Kamagata Y. . ( 2006; ). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . . Int J Syst Evol Microbiol 56:, 1331–1340. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yan J. , Rash B. A. , Rainey F. A. , Moe W. M. . ( 2009; ). Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. . Environ Microbiol 11:, 833–843. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zehnder A. J. B. , Wuhrmann K. . ( 1976; ). Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. . Science 194:, 1165–1166. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034926-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034926-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error