1887

Abstract

A Gram-negative, aerobic, motile and rod-shaped bacterium, designated strain T7-07, was isolated from compost in Daejeon, Korea. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain T7-07 had 99.0 % gene sequence similarity with KACC 14618 and 94.7–95.9 % with other recognized species of the genus . Cells formed creamy white to yellowish colonies on R2A agar and contained Q-8 as the predominant ubiquinone, C iso, C iso, C iso ω9 and C iso 3-OH as the major fatty acids, and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmethylethanolamine and an unknown aminolipid as the major polar lipids. The DNA G+C content of strain T7-07 was 68.3 mol%. DNA–DNA reassociation experiments between T7-07 and KACC 14618 resulted in a mean relatedness value of 22.2 %. Combined genotypic and phenotypic data supported the conclusion that the strain T7-07 represents a novel species, for which the name sp. nov. is proposed. The type strain is T7-07 ( = KCTC 12667 = DSM 18060).

Funding
This study was supported by the:
  • , 21C Frontier Microbial Genomics and Application Center Program , (Award MG08-0101-2-0)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034868-0
2012-07-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1674.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034868-0&mimeType=html&fmt=ahah

References

  1. Aslam Z., Park J. H., Kim S. W., Jeon C. O., Chung Y. R. 2009; Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov.. Int J Syst Evol Microbiol 59:2967–2972 [CrossRef][PubMed]
    [Google Scholar]
  2. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Bates R. G., Bower V. E. 1956; Alkaline solutions for pH control. Anal Chem 28:1322–1324 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146 [CrossRef]
    [Google Scholar]
  8. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Jin L., Kim K. K., Im W. T., Yang H. C., Lee S. T. 2007; Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae . Int J Syst Evol Microbiol 57:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  11. Kane B. E., Mullins J. T. 1973; Thermophilic fungi in a municipal waste compost system. Mycologia 65:1087–1100 [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for Molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  14. Kwon S. W., Kim B. Y., Weon H. Y., Baek Y. K., Go S. J. 2007; Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 57:954–958 [CrossRef][PubMed]
    [Google Scholar]
  15. Lajudie J. 1956; [Study on thermophilic soil microflora. I. Technics]. Ann Inst Pasteur (Paris) 91:778–780 (in French) [PubMed]
    [Google Scholar]
  16. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977; Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117 [CrossRef]
    [Google Scholar]
  17. Moriya T., Hikota T., Yumoto I., Ito T., Terui Y., Yamagishi A., Oshima T. 2011; Calditerricola satsumensis gen. nov., sp. nov. and Calditerricola yamamurae sp. nov., extreme thermophiles isolated from a high-temperature compost. Int J Syst Evol Microbiol 61:631–636 [CrossRef][PubMed]
    [Google Scholar]
  18. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  22. Tarrand J. J., Gröschel D. H. M. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  23. Ten L. N., Im W.-T., Kim M.-K., Kang M. S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [CrossRef][PubMed]
    [Google Scholar]
  27. Young C. C., Kämpfer P., Ho M. J., Busse H. J., Huber B. E., Arun A. B., Shen F. T., Lai W. A., Rekha P. D. 2007; Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 57:2790–2793 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034868-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034868-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error