1887

Abstract

Two strains, designated TW92 and TW93, were isolated from marine sediment collected from the south coast of Korea. Cells of both strains were Gram-staining-negative, coccus-shaped, aerobic, motile and catalase- and oxidase-positive. Strain TW92 grew optimally in the presence of 2 % (w/v) NaCl (range 1–5 %) while strain TW93 grew optimally in the presence of 1 % (w/v) NaCl (range 0–12 %), and both strains had an optimal growth temperature of 30 °C (range 4–37 °C). Strains TW92 and TW93 had the same optimum pH (pH 7), but differed in their ability to grow at pH 10. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strains TW92 and TW93 were most closely related to BL1, with 98.8 % and 98.7 % similarity, respectively. Pairwise similarity between the 16S rRNA gene sequences of strains TW92 and TW93 was 99.9 %. The major fatty acids of both strains were summed features 3 (comprising Cω7/iso-C 2-OH), C and Cω7. Both strains possessed the ubiquinone Q-8 as the predominant respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the polar lipids. The genomic DNA G+C contents of strains TW92 and TW93 were 58.5 and 59.6 mol%, respectively. Genomic relatedness values based on DNA–DNA hybridization of strains TW92 and TW93 with related species were below 47 % and 31 %, respectively. DNA–DNA hybridization values between strains TW92 and TW93 were above 85 %. On the basis of a taxonomic study using polyphasic analysis, it is proposed that the two isolates represent a novel species, sp. nov., with strain TW92 ( = KACC 15117 = JCM 17329) as the type strain and strain TW93 ( = KACC 15118 = JCM 17330) as an additional strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034645-0
2012-07-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1552.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034645-0&mimeType=html&fmt=ahah

References

  1. Bae J. W. , Rhee S. K. , Park J. R. , Chung W. H. , Nam Y. D. , Lee I. , Kim H. , Park Y. H. . ( 2005; ). Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. . Appl Environ Microbiol 71:, 8825–8835. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baker G. C. , Smith J. J. , Cowan D. A. . ( 2003; ). Review and re-analysis of domain-specific 16S primers. . J Microbiol Methods 55:, 541–555. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chang H. W. , Nam Y. D. , Jung M. Y. , Kim K. H. , Roh S. W. , Kim M. S. , Jeon C. O. , Yoon J. H. , Bae J. W. . ( 2008; ). Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. . J Microbiol Methods 75:, 523–530. [CrossRef] [PubMed]
    [Google Scholar]
  4. Choi W. C. , Kang S. J. , Jung Y. T. , Oh T. K. , Yoon J. H. . ( 2011; ). Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm in the South Sea, Korea, and emended description of the genus Oceanisphaera Romanenko et al. 2003. . Int J Syst Evol Microbiol 61:, 2880–2884. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D. , Jones D. . ( 1981a; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45:, 316–354.[PubMed]
    [Google Scholar]
  7. Collins M. D. , Jones D. . ( 1981b; ). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. . J Appl Bacteriol 51:, 129–134. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  11. Kluge A. G. , Farris J. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  12. MIDI ( 1999; ). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  13. Park S. J. , Kang C. H. , Nam Y. D. , Bae J. W. , Park Y. H. , Quan Z. X. , Moon D. S. , Kim H. J. , Roh D. H. , Rhee S. K. . ( 2006; ). Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. . Int J Syst Evol Microbiol 56:, 895–898. [CrossRef] [PubMed]
    [Google Scholar]
  14. Rochelle P. A. , Fry J. C. , Parkes R. J. , Weightman A. J. . ( 1992; ). DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. . FEMS Microbiol Lett 79:, 59–65.[PubMed] [CrossRef]
    [Google Scholar]
  15. Romanenko L. A. , Schumann P. , Zhukova N. V. , Rohde M. , Mikhailov V. V. , Stackebrandt E. . ( 2003; ). Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. . Int J Syst Evol Microbiol 53:, 1885–1888. [CrossRef] [PubMed]
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  18. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  19. Srinivas T. N. , Reddy P. V. , Begum Z. , Shivaji S. . ( 2012; ). Oceanisphaera arctica sp. nov., isolated from a marine sediment of Kongsfjorden, Svalbard, Arctic. . Int J Syst Evol Microbiol 62: (in press) http://dx.doi.org/10.1099/ijs.0.036475-0
    [Google Scholar]
  20. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  23. Tindall B. J. . ( 2005; ). Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, Section 4.1.5, Supplement 1, 2nd edn. Edited by A. Akkermans, F. de Bruijn & D. van Elsas. Dordrecht: Kluwer.
  24. Tittsler R. P. , Sandholzer L. A. . ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  25. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  26. Xin H. , Itoh T. , Zhou P. , Suzuki K. , Kamekura M. , Nakase T. . ( 2000; ). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. . Int J Syst Evol Microbiol 50:, 1297–1303. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034645-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034645-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error