1887

Abstract

Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH range 6.5–10.3 (optimum pH 8.0), and between 0.1 and 4.5 M Na (optimum 0.9 M Na). No growth was observed in the absence of supplemented Na. Strain JW/BP-GSL-QD utilized -arabinose, -fructose, -galactose, -glucose, inulin, lactose, maltose, mannitol, -mannose, pyruvate, -ribose, -sorbitol, starch, trehalose, xylitol and -xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C (39.1 %) and anteiso-C (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD the highest degree of 16S rRNA gene sequence similarity was found with (98.6 %), (96.7 %) and (95.6 %). The level of DNA–DNA relatedness between strain JW/BP-GSL-QD and Y1 was 58 %. On the basis of physiological, chemotaxonomic and phylogenetic data, strain JW/BP-GSL-QD represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JW/BP-GSL-QD ( = ATCC BAA-2118 = DSM 23721).

Funding
This study was supported by the:
  • US Airforce Office of Scientific Research (Award AFOSR 033835-01)
  • National Science Foundation (Award MCB 0604224)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034629-0
2012-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2090.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034629-0&mimeType=html&fmt=ahah

References

  1. An S. Y., Ishikawa S., Kasai H., Goto K., Yokota A. 2007; Amphibacillus sediminis sp. nov., an endospore-forming bacterium isolated from lake sediment in Japan. Int J Syst Evol Microbiol 57:2489–2492 [View Article][PubMed]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  5. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC, USA: American Society for Microbiology;
    [Google Scholar]
  6. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  7. Ishikawa M., Ishizaki S., Yamamoto Y., Yamasato K. 2002; Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279 [View Article][PubMed]
    [Google Scholar]
  8. Ishikawa M., Nakajima K., Itamiya Y., Furukawa S., Yamamoto Y., Yamasato K. 2005; Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1. Int J Syst Evol Microbiol 55:2427–2439 [View Article][PubMed]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  10. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of halophilic the homoacetic bacterium Acetohalobium arabaticum . Mikrobiologiya 61:563–567 (in Russian)
    [Google Scholar]
  11. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  12. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [View Article]
    [Google Scholar]
  13. Ljungdahl L., Wiegel J. 1986; Working with anaerobic bacteria. In Manual of Industrial Microbiology and Biotechnology pp. 84–96 Edited by Demain A. L., Solomon N. A. Washington, DC, USA: American Society for Microbiology;
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  16. Niimura Y., Koh E., Yanagida F., Suzuki K., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinine, and catalase. Int J Syst Bacteriol 40:297–301 [View Article]
    [Google Scholar]
  17. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  18. Sorokin I. D., Zadorina E. V., Kravchenko I. K., Boulygina E. S., Tourova T. P., Sorokin D. Y. 2008; Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827 [View Article][PubMed]
    [Google Scholar]
  19. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  20. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  21. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Wiegel J. 1998; Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2:257–267 [View Article][PubMed]
    [Google Scholar]
  23. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  24. Wu X. Y., Zheng G., Zhang W. W., Xu X. W., Wu M., Zhu X. F. 2010; Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol 60:2540–2543 [View Article][PubMed]
    [Google Scholar]
  25. Zhilina T. N., Garnova E. S., Tourova T. P., Kostrikina N. A., Zavarzin G. A. 2001; Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., new alkaliphilic, facultatively anaerobic, saccharolytic bacilli from Lake Magadi. Microbiology (English translation of Microbiologiia) 70:711–722 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034629-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034629-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error