1887

Abstract

Six Gram-negative, rod-shaped, non-spore-forming bacterial strains were isolated from small holes on plaster walls of the stone chamber interior of the Kitora Tumulus in Asuka village, Nara Prefecture, Japan. These were investigated by means of a polyphasic approach. All the isolates were strictly aerobic and motile by peritrichous flagella. Phylogenetic trees generated based on 16S rRNA gene sequences identified two novel lineages (comprising five isolates and one isolate, respectively) within the genus . The isolates were characterized by having Q-10 as the major ubiquinone system and Cω7 (58.7–63.1 % of the total) as the predominant fatty acid. DNA–DNA hybridization experiments endorsed the species rank for the two lineages, for which the names sp. nov. (type strain K5929-2-1b = JCM 17774 = NCIMB 14760) and sp. nov. (type strain K8617-1-1b = JCM 17772 = NCIMB 14759) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034595-0
2012-08-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/2032.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034595-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Asai T.. ( 1935;). [Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits: a new classification of the oxidative bacteria]. . J Agric Chem Soc Japan 11:, 674–708 (in Japanese).
    [Google Scholar]
  3. Asai T., Lizuka H., Komagata K.. ( 1964;). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  4. Brown A. J.. ( 1886;). On an acetic ferment which forms cellulose. . J Chem Soc Trans 49:, 432–439. [CrossRef]
    [Google Scholar]
  5. De Ley J., Swings J., Gosselé F.. ( 1984;). Genus I. Acetobacter Beijerinck 1898, 215AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 268–274. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  6. Dutta D., Gachhui R.. ( 2007;). Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. . Int J Syst Evol Microbiol 57:, 353–357. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Franke I. H., Fegan M., Hayward C., Leonard G., Stackebrandt E., Sly L. I.. ( 1999;). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. . Int J Syst Bacteriol 49:, 1681–1693. [CrossRef][PubMed]
    [Google Scholar]
  9. Fuentes-Ramírez L. E., Bustillos-Cristales R., Tapia-Hernández A., Jiménez-Salgado T., Wang E. T., Martínez-Romero E., Caballero-Mellado J.. ( 2001;). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. . Int J Syst Evol Microbiol 51:, 1305–1314.[PubMed]
    [Google Scholar]
  10. Gillis M., Kersters K., Hoste B., Janssens D., Kroppenstedt R. M., Stephan M. P., Teixeira K. R. S., Döbereiner J., Deley J.. ( 1989;). Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. . Int J Syst Bacteriol 39:, 361–364. [CrossRef]
    [Google Scholar]
  11. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  13. Kigawa R., Sano C., Mabuchi H., Miura S.. ( 2005;). [Investigation of biological issues in the Kitora Tumulus during its restoration work]. . Sci Conserv 44:, 165–171 (in Japanese).
    [Google Scholar]
  14. Kigawa R., Mabuchi H., Sano C., Miura S.. ( 2006;). [Investigation of biological issues in the Kitora Tumulus during its restoration work (2)]. . Sci Conserv 45:, 93–105 (in Japanese).
    [Google Scholar]
  15. Kigawa R., Sano C., Mabuchi H., Kiyuna T., Tazato N., Nishijima M., Sugiyama J.. ( 2009;). [Biological issues in Kitora Tumulus during relocation works of the mural paintings]. . Sci Conserv 48:, 167–174 (in Japanese).
    [Google Scholar]
  16. Kumar S., Tamura K., Nei M.. ( 2004;). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Nakagawa Y., Sakane T., Suzuki M., Hatano K.. ( 2002;). Phylogenetic structure of the genera Flexibacter, Flexithrix, and Microscilla deduced from 16S rRNA sequence analysis. . J Gen Appl Microbiol 48:, 155–165. [CrossRef][PubMed]
    [Google Scholar]
  19. Navarro R. R., Komagata K.. ( 1999;). Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. . J Gen Appl Microbiol 45:, 7–15. [CrossRef][PubMed]
    [Google Scholar]
  20. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  21. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sano C., Nishijima M., Kiyuna T., Kigawa R., Sugiyama J.. ( 2010;). [Carboxylic acids productivity of major microorganisms isolated from the stone chamber interior of Takamatsuzuka Tumulus and Kitora Tumulus, Nara Prefecture, Japan]. . Sci Conserv 49:, 209–218 (in Japanese).
    [Google Scholar]
  24. Sugiyama J., Kiyuna T., An K.-D., Nagatsuka Y., Handa Y., Tazato N., Hata-Tomida J., Nishijima M., Koide T.. & other authors ( 2009;). Microbiological survey of the stone chambers of Takamatsuzuka and Kitora tumuli, Nara Prefecture, Japan: a milestone in elucidating the cause of biodeterioration of mural paintings. . In Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, pp. 51–73. Edited by Sano C... Tokyo:: National Research Institute for Cultural Properties, Tokyo;.
    [Google Scholar]
  25. Swings J., Gillis M., Kersters K.. ( 1992;). Phenotypic identification of acetic acid bacteria. . In Identification Methods in Applied and Environmental Microbiology, pp. 103–110. Edited by Board R. G., Jones D., Skinner F. A... Oxford:: Blackwell Scientific;.
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  27. Uchino Y., Yokota A., Sugiyama J.. ( 1997;). Phylogenetic position of the marine subdivision of Agrobacterium species based on 16S rRNA sequence analysis. . J Gen Appl Microbiol 43:, 243–247. [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Yamada Y.. ( 1986;). Acetic acid bacteria. . In Methods for the Isolation of Microorganisms, pp. 454–457. Edited by Yamasato K., Udagawa S., Kodama T., Morichi T... Tokyo:: R & D Planning (in Japanese);.
    [Google Scholar]
  30. Yamada Y., Yukphan P.. ( 2008;). Genera and species in acetic acid bacteria. . Int J Food Microbiol 125:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
  31. Yamada Y., Aida K., Uemura T.. ( 1969;). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. . J Gen Appl Microbiol 15:, 181–196. [CrossRef]
    [Google Scholar]
  32. Yamada Y., Okada Y., Kondo K.. ( 1976;). Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. . J Gen Appl Microbiol 22:, 237–245. [CrossRef]
    [Google Scholar]
  33. Yamada Y., Hoshino K., Ishikawa T.. ( 1997;). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. . Biosci Biotechnol Biochem 61:, 1244–1251. [CrossRef][PubMed]
    [Google Scholar]
  34. Yamada Y., Hoshino K., Ishikawa T.. ( 1998;). Gluconacetobacter corrig. (Gluconoacetobacter [sic]). In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 64. . Int J Syst Bacteriol 48:, 327–328. [CrossRef]
    [Google Scholar]
  35. Yukphan P., Malimas T., Muramatsu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Suzuki K. I., Potacharoen W., Yamada Y.. ( 2008;). Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the α-Proteobacteria. . Biosci Biotechnol Biochem 72:, 672–676. [CrossRef][PubMed]
    [Google Scholar]
  36. Yukphan P., Malimas T., Muramatsu Y., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Hamana K.. & other authors ( 2009;). Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α-Proteobacteria. . Biosci Biotechnol Biochem 73:, 2156–2162. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034595-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034595-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error