1887

Abstract

An indigo-reducing facultatively alkaliphilic and halophilic strain, designated strain A21, was isolated from a fermented Polygonum indigo ( Lour.) liquor sample aged for 4 days prepared in a laboratory. 16S rRNA gene sequence phylogeny suggested that strain A21 was a member of the genus with the closest relative being the type strain of (similarity: 96.0 %). The cells of the isolate stained Gram-positive and were facultatively anaerobic straight rods that were motile by peritrichous flagella. The strain grew between 18 and 48 °C with optimum growth at 39 °C. It grew in the pH range of 7–12. It hydrolysed casein, gelatin and Tween 20 but not Tweens 40, 60 and 80, starch or DNA. No isoprenoid quinone was detected and the DNA G+C content was 39.7 mol%. The whole-cell fatty acid profile mainly consisted of iso-C, anteiso-C and C. DNA–DNA hybridization experiments with revealed 13 % relatedness. Owing to the differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analyses based on 16S rRNA gene sequences and DNA–DNA relatedness data from reported species, the isolate merits classification as a representative of a novel species, for which the name sp. nov. is proposed. The type strain is A21 ( = JCM 17251  = NCIMB 14685). The description of the genus is also emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034579-0
2013-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1437.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034579-0&mimeType=html&fmt=ahah

References

  1. Aino K., Narihiro T., Minamida K., Kamagata Y., Yoshimune K., Yumoto I.. ( 2010;). Bacterial community characterization and dynamics of indigo fermentation. . FEMS Microbiol Ecol 74:, 174–183. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 452–470.
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  8. Heyrman J., Logan N. A., Busse H.-J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P.. ( 2003;). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens com. nov., and emended description of the genus Virgibacillus. . Int J Syst Evol Microbiol 53:, 501–511. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim Y.-G., Choi D. H., Hyun S., Cho B. C.. ( 2007;). Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. . Int J Syst Evol Microbiol 57:, 409–413. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Lee J.-S., Lim J.-M., Lee K. C., Lee J. C., Park Y.-H., Kim C.-J.. ( 2006;). Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. . Int J Syst Evol Microbiol 56:, 251–257. [CrossRef][PubMed]
    [Google Scholar]
  12. Lee S.-Y., Oh T.-K., Kim W., Yoon J.-H.. ( 2010;). Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 2758–2762. [CrossRef][PubMed]
    [Google Scholar]
  13. Lu J., Nogi Y., Takami H.. ( 2001;). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. . FEMS Microbiol Lett 205:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  14. Lu J., Nogi Y., Takami H.. ( 2002;). Oceanobacillus iheyensis gen. nov., sp. nov. In Validation List no. 85. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. . Int J Syst Evol Microbiol 52:, 685–690. [CrossRef][PubMed]
    [Google Scholar]
  15. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  17. Nakajima K., Hirota K., Nodasaka Y., Yumoto I.. ( 2005;). Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. . Int J Syst Evol Microbiol 55:, 1525–1530. [CrossRef][PubMed]
    [Google Scholar]
  18. Nam J.-H., Bae W., Lee D.-H.. ( 2008;). Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. . Int J Syst Evol Microbiol 58:, 1109–1113. [CrossRef][PubMed]
    [Google Scholar]
  19. Namwong S., Tanasupawat S., Lee K. C., Lee J.-S.. ( 2009;). Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. . Int J Syst Evol Microbiol 59:, 2254–2259. [CrossRef][PubMed]
    [Google Scholar]
  20. Padden A. N., Dillon V. M., Edmonds J., Collins M. D., Alvarez N., John P.. ( 1999;). An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. . Int J Syst Bacteriol 49:, 1025–1031. [CrossRef][PubMed]
    [Google Scholar]
  21. Raats D., Halpern M.. ( 2007;). Oceanobacillus chironomi sp. nov., a halotolerant and facultatively alkaliphilic species isolated from a chironomid egg mass. . Int J Syst Evol Microbiol 57:, 255–259. [CrossRef][PubMed]
    [Google Scholar]
  22. Romano I., Lama L., Nicolaus B., Poli A., Gambacorta A., Giordano A.. ( 2006;). Oceanobacillus oncorhynchi subsp. incaldanensis subsp. nov., an alkalitolerant halophile isolated from an algal mat collected from a sulfurous spring in Campania (Italy), and emended description of Oceanobacillus oncorhynchi. . Int J Syst Evol Microbiol 56:, 805–810. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  25. Takahara Y., Tanabe O.. ( 1960;). Studies on the reduction of indigo in industrial fermentation vat (VII). . J Ferment Technol 38:, 329–331.
    [Google Scholar]
  26. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Teather R. M., Wood P. J.. ( 1982;). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. . Appl Environ Microbiol 43:, 777–780.[PubMed]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  30. Tominaga T., An S.-Y., Oyaizu H., Yokota A.. ( 2009;). Oceanobacillus soja sp. nov. isolated from soy sauce production equipment in Japan. . J Gen Appl Microbiol 55:, 225–232. [CrossRef][PubMed]
    [Google Scholar]
  31. Wang L., Liu W.-Y., Gu Z.-J., Chen S.-F., Yang S.-S.. ( 2010;). Oceanobacillus manasiensis sp. nov., a moderately halophilic bacterium isolated from the salt lakes of Xinjiang, China. . J Microbiol 48:, 312–317. [CrossRef][PubMed]
    [Google Scholar]
  32. Whon T. W., Jung M.-J., Roh S. W., Nam Y. D., Park E.-J., Shin K.-S., Bae J.-W.. ( 2010;). Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. . J Microbiol 48:, 862–866. [CrossRef][PubMed]
    [Google Scholar]
  33. Yang J.-Y., Huo Y.-Y., Xu X.-W., Meng F.-X., Wu M., Wang C.-S.. ( 2010;). Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor. . Int J Syst Evol Microbiol 60:, 2409–2414. [CrossRef][PubMed]
    [Google Scholar]
  34. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H.. ( 1998;). Bacillus horti sp. nov., a new gram-negative alkaliphilic bacillus. . Int J Syst Bacteriol 48:, 565–571. [CrossRef][PubMed]
    [Google Scholar]
  35. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K.. ( 2001;). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. . Int J Syst Evol Microbiol 51:, 349–355.[PubMed]
    [Google Scholar]
  36. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H.. ( 2002;). Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. . Int J Syst Evol Microbiol 52:, 85–90.[PubMed]
    [Google Scholar]
  37. Yumoto I., Hirota K., Nodasaka Y., Yokota Y., Hoshino T., Nakajima K.. ( 2004;). Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. . Int J Syst Evol Microbiol 54:, 2379–2383. [CrossRef][PubMed]
    [Google Scholar]
  38. Yumoto I., Hirota K., Nodasaka Y., Nakajima K.. ( 2005;). Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. . Int J Syst Evol Microbiol 55:, 1521–1524. [CrossRef][PubMed]
    [Google Scholar]
  39. Yumoto I., Hirota K., Nodasaka Y., Tokiwa Y., Nakajima K.. ( 2008;). Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. . Int J Syst Evol Microbiol 58:, 901–905. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034579-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034579-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error