1887

Abstract

A Gram-negative, aerobic, motile, rod-shaped, arsenite [As(III)]-resistant bacterium, designated strain ZS79, was isolated from subsurface soil of an iron mine in China. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain ZS79 clustered closely with strains of five species, with 96.9, 96.1, 96.0, 95.8 and 95.3 % sequence similarities to Ko07, GH1-9, IMMIB APB-9, KMM 329 and CTN-1, respectively. The major cellular fatty acids were iso-C (28.6 %), iso-Cω9 (19.9 %), iso-C (13.6 %), iso-C (12.6 %) and iso-C 3-OH (12.4 %). The genomic DNA G+C content was 70.7 mol% and the major respiratory quinone was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unknown phospholipid. On the basis of morphological and physiological/biochemical characteristics, phylogenetic position and chemotaxonomic data, this strain is considered to represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is ZS79 ( = CGMCC 1.10752 = KCTC 23365).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034405-0
2012-07-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1659.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034405-0&mimeType=html&fmt=ahah

References

  1. Aslam Z. , Yasir M. , Jeon C. O. , Chung Y. R. . ( 2009; ). Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). . Int J Syst Evol Microbiol 59:, 675–680. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bae H. S. , Im W. T. , Lee S. T. . ( 2005; ). Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. . Int J Syst Evol Microbiol 55:, 1155–1161. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bowman J. P. . ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  4. Cai L. , Liu G. H. , Rensing C. , Wang G. J. . ( 2009; ). Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. . BMC Microbiol 9:, 4. [CrossRef] [PubMed]
    [Google Scholar]
  5. Christensen P. , Cook F. D. . ( 1978; ). Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. . Int J Syst Bacteriol 28:, 367–393. [CrossRef]
    [Google Scholar]
  6. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the Identification of Medical Bacteria. London, UK:: Cambridge University Press;.
    [Google Scholar]
  8. Dussault H. P. . ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  9. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gordon R. E. , Smith M. M. . ( 1955; ). Proposed group of characters for the separation of Streptomyces and Nocardia . . J Bacteriol 69:, 147–150.[PubMed]
    [Google Scholar]
  11. Grossart H. P. , Steward G. F. , Martinez J. , Azam F. . ( 2000; ). A simple, rapid method for demonstrating bacterial flagella. . Appl Environ Microbiol 66:, 3632–3636. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guindon S. , Lethiec F. , Duroux P. , Gascuel O. . ( 2005; ). PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. . Nucleic Acids Res 33: (Web Server issue), W557–W559. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hinz K. H. , Ryll M. , Köhler B. . ( 1998; ). Detection of acid production from carbohydrates by Riemerella anatipestifer and related organisms using the buffered single substrate test. . Vet Microbiol 60:, 277–284. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kinyon J. M. , Harris D. L. . ( 1979; ). Treponema innocens, a new species of intestinal bacteria, and emended description of the type strain of Treponema hyodysenteriae Harris et al. . Int J Syst Bacteriol 29:, 102–109. [CrossRef]
    [Google Scholar]
  15. Kluge A. G. , Farris J. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  16. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  17. Lányí B. . ( 1987; ). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  18. Lee J. W. , Im W. T. , Kim M. K. , Yang D. C. . ( 2006; ). Lysobacter koreensis sp. nov., isolated from a ginseng field. . Int J Syst Evol Microbiol 56:, 231–235. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lim C. K. , Cooksey D. A. . ( 1993; ). Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae . . J Bacteriol 175:, 4492–4498.[PubMed]
    [Google Scholar]
  20. Liu M. , Liu Y. , Wang Y. , Luo X. , Dai J. , Fang C. . ( 2011; ). Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. . Int J Syst Evol Microbiol 61:, 433–437. [CrossRef] [PubMed]
    [Google Scholar]
  21. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Oh K. H. , Kang S. J. , Jung Y. T. , Oh T. K. , Yoon J. H. . ( 2011; ). Lysobacter dokdonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 1089–1093.[PubMed] [CrossRef]
    [Google Scholar]
  23. Park J. H. , Kim R. , Aslam Z. , Jeon C. O. , Chung Y. R. . ( 2008; ). Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter . . Int J Syst Evol Microbiol 58:, 387–392. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rhoades K. R. , Rimler R. B. , Sandhu T. S. . ( 1989; ). Pasteurellosis and pseudotuberculosis. . In A Laboratory Manual for the Isolation and Identification of Avian Pathogens, , 3rd edn., pp. 14–21. Edited by Purchase H. G. , Arp L. H. , Domermuth C. H. , Pearson J. E. . . Kennet Square, PA:: American Association of Avian Pathologists;.
    [Google Scholar]
  25. Romanenko L. A. , Uchino M. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2008; ). Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. . Int J Syst Evol Microbiol 58:, 370–374. [CrossRef] [PubMed]
    [Google Scholar]
  26. Saddler G. S. , Bradbury J. F. . ( 2005; ). Family I. Xanthomonadaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, pp. 63 (The Proteobacteria), part B (The Gammaproteobacteria). Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  27. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Srinivasan S. , Kim M. K. , Sathiyaraj G. , Kim H. B. , Kim Y. J. , Yang D. C. . ( 2010; ). Lysobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 1543–1547. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stolz J. F. , Basu P. , Oremland R. S. . ( 2010; ). Microbial arsenic metabolism: new twists on an old poison. . Microbe Magazine 5:, 53–59.[CrossRef]
    [Google Scholar]
  31. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  32. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ten L. N. , Jung H. M. , Im W. T. , Yoo S. A. , Oh H. M. , Lee S. T. . ( 2009; ). Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 59:, 958–963. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  36. Wang Y. , Dai J. , Zhang L. , Luo X. , Li Y. , Chen G. , Tang Y. , Meng Y. , Fang C. . ( 2009; ). Lysobacter ximonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 786–789. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang G. L. , Wang L. , Chen H. H. , Shen B. , Li S. P. , Jiang J. D. . ( 2011; ). Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. . Int J Syst Evol Microbiol 61:, 674–679. [CrossRef] [PubMed]
    [Google Scholar]
  38. Weeger W. , Lièvremont D. , Perret M. , Lagarde F. , Hubert J. C. , Leroy M. , Lett M. C. . ( 1999; ). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. . Biometals 12:, 141–149. [CrossRef] [PubMed]
    [Google Scholar]
  39. Weon H. Y. , Kim B. Y. , Baek Y. K. , Yoo S. H. , Kwon S. W. , Stackebrandt E. , Go S. J. . ( 2006; ). Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. . Int J Syst Evol Microbiol 56:, 947–951. [CrossRef] [PubMed]
    [Google Scholar]
  40. Weon H. Y. , Kim B. Y. , Kim M. K. , Yoo S. H. , Kwon S. W. , Go S. J. , Stackebrandt E. . ( 2007; ). Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. . Int J Syst Evol Microbiol 57:, 548–551. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wolfe-Simon F. , Blum J. S. , Kulp T. R. , Gordon G. W. , Hoeft S. E. , Pett-Ridge J. , Stolz J. F. , Webb S. M. , Weber P. K. . & other authors ( 2011; ). A bacterium that can grow by using arsenic instead of phosphorus. . Science 332:, 1163–1166.[CrossRef]
    [Google Scholar]
  42. Yassin A. F. , Chen W. M. , Hupfer H. , Siering C. , Kroppenstedt R. M. , Arun A. B. , Lai W. A. , Shen F. T. , Rekha P. D. , Young C. C. . ( 2007; ). Lysobacter defluvii sp. nov., isolated from municipal solid waste. . Int J Syst Evol Microbiol 57:, 1131–1136. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang L. , Bai J. , Wang Y. , Wu G. L. , Dai J. , Fang C. . ( 2011; ). Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil in north-west China. . Int J Syst Evol Microbiol 61:, 2259–2265. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034405-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034405-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error