gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of as comb. nov. Free

Abstract

A novel Gram-stain-positive, moderately halophilic bacterium, designated strain P4B, was isolated from water of the hypersaline Aran-Bidgol lake in Iran and characterized taxonomically by using a polyphasic approach. Cells of strain P4B were non-motile rods producing ellipsoidal endospores at a central position in non-swollen sporangia. Strain P4B was strictly aerobic and catalase- and oxidase-positive. It was able to grow at NaCl concentrations of 0.5–12.5 % (w/v), with optimum growth occurring at 5–7.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. On the basis of 16S rRNA gene sequence analysis, strain P4B was shown to belong to the phylum and shared highest similarity with HS136 (97.1 %) and BH169 (95.1 %). However, it shared only 91.3 % 16S rRNA gene sequence similarity with DSM 10, indicating that strain P4B might not be a member of the genus The DNA G+C content of this new isolate was 38.9 mol%. DNA–DNA hybridization experiments revealed a low level of relatedness between strain P4B and HS136 (6 %). The major cellular fatty acids of strain P4B were iso-C and anteiso-C, as for HS136 but in contrast to DSM 16461 and DSM 10. Its polar lipid pattern consisted of phosphatidylglycerol, an aminoglycolipid and an unknown phospholipid. This polar lipid profile was similar to that obtained for DSM 21632 but different from those of DSM 16461 and DSM 10. The isoprenoid quinones were MK-7 (88 %) and MK-8 (2 %). The peptidoglycan contained -diaminopimelic acid as the diagnostic diamino acid. All these features indicate placement of strain P4B within the , closely related to but with features clearly distinct from those of the genus and other related genera. On the basis of these data, strain P4B is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is P4B ( = CCM 7963 = CECT 7998 = DSM 25260 = IBRC-M 10614 = KCTC 13821). It is also suggested to transfer to this new genus, as comb. nov. The type strain of is HS136 ( = CCM 7595 = DSM 21632 = JCM 15720 = LMG 25222).

Funding
This study was supported by the:
  • Iranian Biological Resource Centre (IBRC) (Award MI-1388-04)
  • International Foundation for Science (IFS) (Award A/4527-1)
  • Spanish Ministerio de Ciencia e Innovación (Award CGL2010-19303)
  • National Science Foundation (Award DEB-0919290)
  • Junta de Andalucía (Award P10-CVI-6226)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034173-0
2012-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/11/2691.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034173-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Salehghamari E., Khajeh K., Kabiri M., Naddaf S. 2008; Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Basic Microbiol 48:160–167 [View Article][PubMed]
    [Google Scholar]
  2. Amoozegar M. A., Sánchez-Porro C., Rohban R., Hajighasemi M., Ventosa A. 2009; Bacillus persepolensis sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 59:2352–2358 [View Article][PubMed]
    [Google Scholar]
  3. Arahal D. R., Ventosa A. 2002; Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp. 83–99 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell; [View Article]
    [Google Scholar]
  4. Baron E. J., Finegold S. M. 1990 Bailey and Scott’s Diagnostic Microbiology, 8th edn. St Louis: Mosby;
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  6. de la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A. 2011; Taxonomy of halophiles. In Extremophiles Handbook pp. 255–308 Edited by Horikoshi K. Tokyo: Springer; [View Article]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  8. Embley T. M., Wait R. 1994; Structural lipids of Eubacteria . In Chemical Methods in Prokaryotic Systematics pp. 121–161 Edited by Goodfellow M., O’Donnell A. G. New York: Wiley;
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  11. Harrigan W. F., McCance M. E. 1976 Laboratory Methods in Food and Dairy Microbiology London: Academic Press;
    [Google Scholar]
  12. Heyrman J., Vanparys B., Logan N. A., Balcaen A., Rodríguez-Díaz M., Felske A., De Vos P. 2004; Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 54:47–57 [View Article][PubMed]
    [Google Scholar]
  13. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P. 2005; Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55:111–117 [View Article][PubMed]
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article]
    [Google Scholar]
  15. Karbalaei-Heidari H. R., Amoozegar M. A., Hajighasemi M., Ziaee A. A., Ventosa A. 2009; Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis . J Ind Microbiol Biotechnol 36:21–27 [View Article][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Lim J.-M., Jeon C. O., Kim C.-J. 2006a; Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 56:2903–2908 [View Article][PubMed]
    [Google Scholar]
  18. Lim J.-M., Jeon C. O., Lee J. C., Ju Y. J., Park D. J., Kim C.-J. 2006b; Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int J Syst Evol Microbiol 56:59–63 [View Article][PubMed]
    [Google Scholar]
  19. Lim J.-M., Jeon C. O., Lee S.-M., Lee J. C., Xu L. H., Jiang C. L., Kim C. J. 2006c; Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377 [View Article][PubMed]
    [Google Scholar]
  20. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. other authors 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  23. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [View Article][PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  25. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  26. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S. 2003; Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria . Int J Syst Evol Microbiol 53:569–576 [View Article][PubMed]
    [Google Scholar]
  27. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus . J Gen Microbiol 134:1847–1882[PubMed]
    [Google Scholar]
  29. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [View Article]
    [Google Scholar]
  30. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [View Article]
    [Google Scholar]
  31. Rohban R., Amoozegar M. A., Ventosa A. 2009; Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Shafiei M., Ziaee A., Amoozegar M. A. 2010; Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45:694–699 [View Article]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance pp. 223–254 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  36. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  37. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  38. Wang Q. F., Li W., Liu Y. L., Cao H. H., Li Z., Guo G. Q. 2007; Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57:1143–1147 [View Article][PubMed]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  40. Wieser M., Worliczek H., Kämpfer P., Busse H.-J. 2005; Bacillus herbersteinensis sp. nov.. Int J Syst Evol Microbiol 55:2119–2123 [View Article][PubMed]
    [Google Scholar]
  41. Xue Y., Ventosa A., Wang X., Ren P., Zhou P., Ma Y. 2008; Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58:2828–2832 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034173-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034173-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed