1887

Abstract

A Gram-stain-negative, aerobic, motile, orange-pigmented, slightly halophilic, rod-shaped bacterium, designated strain JAMH 0132, was isolated from the trophosome of a tubeworm in Kagoshima Bay, Japan, and its taxonomic position was investigated using a polyphasic approach. The novel strain grew optimally at 28–30 °C and with about 2.0 % (w/v) NaCl. Chemotaxonomic analysis showed that Q-10 was the predominant respiratory quinone and that Cω7, C 2-OH and C were the major fatty acids. Sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine were the major polar lipids. The genomic DNA G+C content was 60.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JAMH 0132 belonged to the family , within the class . The novel strain appeared most closely related to SW-150 (95.1 % 16S rRNA gene sequence similarity) and showed less sequence similarity with representatives of the genera , , and (<94.8 %). In having no detectable polyamine, strain JAMH 0132 differed from members of all genera currently in the family . On the basis of its phenotypic properties and phylogenetic distinctiveness, strain JAMH 0132 represents a novel species of a new genus in the family for which the name gen. nov., sp. nov. is proposed. The type strain of gen. nov., sp. nov. is JAMH 0132 ( = JCM 15549  = NCIMB 14486).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034033-0
2012-09-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2224.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034033-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A.. ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Baumann L., Baumann P., Mandel M., Allen R. D.. ( 1972;). Taxonomy of aerobic marine eubacteria. . J Bacteriol 110:, 402–429.[PubMed]
    [Google Scholar]
  3. Busse H.-J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P.. ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 2009;). phylip (phylogeny inference package), version 3.6a. http://evolution.genetics.washington.edu/phylip.html
  6. Fujii K., Satomi M., Morita N., Motomura T., Tanaka T., Kikuchi S.. ( 2003;). Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. . Int J Syst Evol Microbiol 53:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  7. Godoy F., Vancanneyt M., Martínez M., Steinbüchel A., Swings J., Rehm B. H. A.. ( 2003;). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov.. Int J Syst Evol Microbiol 53:, 473–477. [CrossRef][PubMed]
    [Google Scholar]
  8. Hamana K., Takeuchi M.. ( 1998;). Polyamine profiles as chemotaxonomic marker within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14.
    [Google Scholar]
  9. Hamana K., Sakane T., Yokota A.. ( 1994;). A polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. . J Gen Appl Microbiol 40:, 75–82. [CrossRef]
    [Google Scholar]
  10. Hosoya R., Hamana K.. ( 2003;). Absence of cellular triamines in four novel flavobacteria located in Flavobacterium–Flexibacter–Cytophaga complex. . Ann Gunma Health Sci 24:, 13–16.
    [Google Scholar]
  11. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  12. Kämpfer P., Witzenberger R., Denner E. B. M., Busse H.-J., Neef A.. ( 2002;). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 52:, 2029–2034. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim B.-S., Lim Y. W., Chun J.. ( 2008;). Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 58:, 2415–2419. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  16. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  17. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K.. ( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56:, 85–89. [CrossRef][PubMed]
    [Google Scholar]
  18. MIDI ( 1999;). Sherlock, Microbial Identification System, Operating Manual, version 3.0. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Miyazaki M., Nogi Y., Usami R., Horikoshi K.. ( 2006;). Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. . Int J Syst Evol Microbiol 56:, 1607–1613. [CrossRef][PubMed]
    [Google Scholar]
  21. Miyazaki M., Nogi Y., Ohta Y., Hatada Y., Fujiwara Y., Ito S., Horikoshi K.. ( 2008;). Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. . Int J Syst Evol Microbiol 58:, 1128–1133. [CrossRef][PubMed]
    [Google Scholar]
  22. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  23. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  24. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Ushiba Y., Takahara Y., Ohta H.. ( 2003;). Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. . Int J Syst Evol Microbiol 53:, 2045–2048. [CrossRef][PubMed]
    [Google Scholar]
  27. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef][PubMed]
    [Google Scholar]
  28. Yoon J.-H., Oh T.-K.. ( 2005;). Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 369–373. [CrossRef][PubMed]
    [Google Scholar]
  29. Yoon J.-H., Lee C.-H., Yeo S.-H., Oh T.-K.. ( 2005;). Sphingopyxis baekryungensis sp. nov., an orange-pigmented bacterium isolated from sea water of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 1223–1227. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034033-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034033-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error