1887

Abstract

Three strains of lactic acid bacteria (LAB) were isolated from the faeces of apparently healthy wild Canada geese () in 2010 by cultivating faecal LAB on Rogosa SL agar under aerobic conditions. These three isolates were found to share 99.9 % gene sequence similarity of their 16S rRNA, their 16S–23S intergenic transcribed spacer region (ITS), partial 23S rRNA, , , and gene sequences. However, the three strains exhibited lower levels of sequence similarity of these genetic targets to all known LAB, and the phylogenetically closest species to the geese strains were , , and . In comparison to ATCC 393, ATCC 25302, ATCC 7469 and DSM 24301, the novel isolates reacted uniquely in tests for cellobiose, galactose, mannitol, citric acid, aesculin and dextrin, and gave negative results in tests for -proline arylamidase and -pyrrolydonyl-arylamidase, and in the Voges-Proskauer test. Biochemical tests for cellobiose, aesculin, galactose, gentiobiose, mannitol, melezitose, ribose, salicin, sucrose, trehalose, raffinose, turanose, amygdalin and arbutin could be used for differentiation between and the novel strains. On the basis of phenotypic and genotypic characteristics, and phylogenetic data, the three isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SL1108 ( = ATCC BAA-2142 = LMG 26001 = DSM 23927) and two additional strains are SL1170 and SL60106.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033852-0
2012-09-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2068.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033852-0&mimeType=html&fmt=ahah

References

  1. Angelakis E. , Raoult D. . ( 2010; ). The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. . PLoS ONE 5:, e10463. [CrossRef] [PubMed]
    [Google Scholar]
  2. Billot-Klein D. , Legrand R. , Schoot B. , van Heijenoort J. , Gutmann L. . ( 1997; ). Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. . J Bacteriol 179:, 6208–6212.[PubMed]
    [Google Scholar]
  3. Brisse S. , Fussing V. , Ridwan B. , Verhoef J. , Willems R. J. . ( 2002; ). Automated ribotyping of vancomycin-resistant Enterococcus faecium isolates. . J Clin Microbiol 40:, 1977–1984. [CrossRef] [PubMed]
    [Google Scholar]
  4. Charteris W. P. , Kelly P. M. , Morelli L. , Collins J. K. . ( 2001; ). Quality control Lactobacillus strains for use with the API 50CH and API ZYM systems at 37 °C. . J Basic Microbiol 41:, 241–251. [CrossRef] [PubMed]
    [Google Scholar]
  5. Claesson M. J. , van Sinderen D. , O’Toole P. W. . ( 2007; ). The genus Lactobacillus–a genomic basis for understanding its diversity. . FEMS Microbiol Lett 269:, 22–28. [CrossRef] [PubMed]
    [Google Scholar]
  6. Claesson M. J. , van Sinderen D. , O’Toole P. W. . ( 2008; ). Lactobacillus phylogenomics–towards a reclassification of the genus. . Int J Syst Evol Microbiol 58:, 2945–2954. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cousin S. , Gulat-Okalla M. L. , Motreff L. , Gouyette C. , Bouchier C. , Clermont D. , Bizet C. . ( 2012; ). Lactobacillus gigeriorum sp. nov., isolated from chicken crop. . Int J Syst Evol Microbiol 62:, 330–334. [CrossRef] [PubMed]
    [Google Scholar]
  8. Damaré J. M. , Hussong D. , Weiner R. M. , Colwell R. R. . ( 1979; ). Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus). . Appl Environ Microbiol 38:, 258–266.[PubMed]
    [Google Scholar]
  9. Di Cagno R. , Minervini G. , Sgarbi E. , Lazzi C. , Bernini V. , Neviani E. , Gobbetti M. . ( 2010; ). Comparison of phenotypic (Biolog System) and genotypic (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR, and amplified fragment length polymorphism, AFLP) methods for typing Lactobacillus plantarum isolates from raw vegetables and fruits. . Int J Food Microbiol 143:, 246–253. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ehrmann M. A. , Kurzak P. , Bauer J. , Vogel R. F. . ( 2002; ). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. . J Appl Microbiol 92:, 966–975. [CrossRef] [PubMed]
    [Google Scholar]
  11. Endo A. , Futagawa-Endo Y. , Dicks L. M. . ( 2010; ). Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. . Anaerobe 16:, 590–596. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felis G. E. , Dellaglio F. . ( 2007; ). Taxonomy of Lactobacilli and Bifidobacteria . . Curr Issues Intest Microbiol 8:, 44–61.[PubMed]
    [Google Scholar]
  13. Fournier P. E. , Suhre K. , Fournous G. , Raoult D. . ( 2006; ). Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. . Int J Syst Evol Microbiol 56:, 1025–1029. [CrossRef] [PubMed]
    [Google Scholar]
  14. González-Castro M. J. , López-Hernández J. , Simal-Lozano J. , Oruña-Concha M. J. . ( 1997; ). Determination of amino acids in green beans by derivatization with phenylisothiocianate and high-performance liquid chromatography with ultraviolet detection. . J Chromatogr Sci 35:, 181–185.[CrossRef]
    [Google Scholar]
  15. Johansson M. L. , Sanni A. , Lönner C. , Molin G. . ( 1995; ). Phenotypically based taxonomy using API 50CH of lactobacilli from Nigerian ogi, and the occurrence of starch fermenting strains. . Int J Food Microbiol 25:, 159–168. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kawasaki S. , Kurosawa K. , Miyazaki M. , Sakamoto M. , Ohkuma M. , Niimura Y. . ( 2011a; ). Lactobacillus ozensis sp. nov., isolated from mountain flowers. .. Int J Syst Evol Microbiol 61:, 2435–2438. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kawasaki S. , Kurosawa K. , Miyazaki M. , Yagi C. , Kitajima Y. , Tanaka S. , Irisawa T. , Okada S. , Sakamoto M. . & other authors ( 2011b; ). Lactobacillus floricola sp. nov., lactic acid bacteria isolated from mountain flowers. . Int J Syst Evol Microbiol 61:, 1356–1359. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kovalenko N. K. , Golovach T. N. , Kvasnikov E. I. . ( 1989; ). [Lactic bacteria in the digestive tract of poultry]. . Mikrobiologiia 58:, 137–143.[PubMed]
    [Google Scholar]
  19. Kuhnert P. , Korczak B. M. . ( 2006; ). Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). . Microbiology 152:, 2537–2548. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kurzak P. , Ehrmann M. A. , Vogel R. F. . ( 1998; ). Diversity of lactic acid bacteria associated with ducks. . Syst Appl Microbiol 21:, 588–592. [CrossRef] [PubMed]
    [Google Scholar]
  21. London J. . ( 1976; ). The ecology and taxonomic status of the lactobacilli. . Annu Rev Microbiol 30:, 279–301. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lorén J. G. , Farfán M. , Miñana-Galbis D. , Fusté M. C. . ( 2010; ). Prediction of whole-genome DNA G+C content within the genus Aeromonas based on housekeeping gene sequences. . Syst Appl Microbiol 33:, 237–242. [CrossRef] [PubMed]
    [Google Scholar]
  23. Massi M. , Vitali B. , Federici F. , Matteuzzi D. , Brigidi P. . ( 2004; ). Identification method based on PCR combined with automated ribotyping for tracking probiotic Lactobacillus strains colonizing the human gut and vagina. . J Appl Microbiol 96:, 777–786. [CrossRef] [PubMed]
    [Google Scholar]
  24. McPherson D. C. , Popham D. L. . ( 2003; ). Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis . . J Bacteriol 185:, 1423–1431. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mundt J. O. , Hammer J. L. . ( 1968; ). Lactobacilli on plants. . Appl Microbiol 16:, 1326–1330.[PubMed]
    [Google Scholar]
  26. Naser S. M. , Thompson F. L. , Hoste B. , Gevers D. , Dawyndt P. , Vancanneyt M. , Swings J. . ( 2005; ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. . Microbiology 151:, 2141–2150. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ohashi Y. , Ushida K. . ( 2009; ). Health-beneficial effects of probiotics: Its mode of action. . Anim Sci J 80:, 361–371. [CrossRef] [PubMed]
    [Google Scholar]
  28. Oki K. , Kudo Y. , Watanabe K. . ( 2012; ). Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 62:, 601–607. [CrossRef] [PubMed]
    [Google Scholar]
  29. Patterson J. A. , Burkholder K. M. . ( 2003; ). Application of prebiotics and probiotics in poultry production. . Poult Sci 82:, 627–631.[PubMed] [CrossRef]
    [Google Scholar]
  30. Pérez Pulido R. , Ben Omar N. , Abriouel H. , Lucas López R. , Martínez Cañamero M. , Gálvez A. . ( 2005; ). Microbiological study of lactic acid fermentation of Caper berries by molecular and culture-dependent methods. . Appl Environ Microbiol 71:, 7872–7879. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  32. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  33. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Švec P. , Kukletová M. , Sedlácek I. . ( 2010; ). Comparative evaluation of automated ribotyping and RAPD-PCR for typing of Lactobacillus spp. occurring in dental caries. . Antonie van Leeuwenhoek 98:, 85–92. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  36. Vásquez A. , Forsgren E. , Fries I. , Paxton R. J. , Flaberg E. , Szekely L. , Olofsson T. C. . ( 2012; ). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. . PLoS ONE 7:, e33188. [CrossRef] [PubMed]
    [Google Scholar]
  37. Volokhov D. V. , Neverov A. A. , George J. , Kong H. , Liu S. X. , Anderson C. , Davidson M. K. , Chizhikov V. . ( 2007; ). Genetic analysis of housekeeping genes of members of the genus Acholeplasma: phylogeny and complementary molecular markers to the 16S rRNA gene. . Mol Phylogenet Evol 44:, 699–710. [CrossRef] [PubMed]
    [Google Scholar]
  38. Whittaker P. , Keys C. E. , Brown E. W. , Fry F. S. . ( 2007; ). Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles. . J Agric Food Chem 55:, 4617–4623. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zavala A. , Naya H. , Romero H. , Sabbia V. , Piovani R. , Musto H. . ( 2005; ). Genomic GC content prediction in prokaryotes from a sample of genes. . Gene 357:, 137–143. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033852-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033852-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error