1887

Abstract

A Gram-positive, rod-shaped, endospore-forming bacterium, designated strain BLB-1, was isolated from samples of tidal flat sediment from the Yellow Sea. 16S rRNA gene sequence analysis demonstrated that the isolate belonged to the rRNA group 2 and was closely related to CIP 108446 (97.4 %), ATCC PTA-4993 (96.7 %), DSM 2898 (96.2 %) and DSM 17140 (95.9 %). Sequence similarities with related species in other genera, including , and , were <96.1 %. Chemotaxonomic data supported the affiliation of strain BLB-1 with the genus . The major menaquinone was MK-7, the cell-wall sugars were glucose and xylose, the cell-wall peptidoglycan type was A4α (-Lys–-Asp), the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown phospholipids, and the major fatty acids were anteiso-C (35.6 %), iso-C (25.6 %) and anteiso-C (16.5 %). The most closely related species, and , were also assigned to this genus based on phylogenetic analysis and phenotypic data. The results of DNA–DNA hybridizations and phenotypic tests supported the differentiation of all three taxa from species of the genus with validly published names. Thus, strain BLB-1 ( = KCTC 13296  = JCM 15800) represents a novel species, for which the name sp. nov. is proposed. It is also proposed that CIP 108446 ( = 4400831 = CCUG49529  = KCTC 13178) and NBRC 100172 ( = 34hs-1  = ATCC PTA-4993  = NRRL B-30641  = DSM 18869  = CIP 108263  = KCTC 3961) be transferred to the genus as comb. nov. and comb. nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033837-0
2012-10-01
2020-02-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2347.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033837-0&mimeType=html&fmt=ahah

References

  1. Ahmed I., Yokota A., Yamazoe A., Fujiwara T.. ( 2007;). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.. Int J Syst Evol Microbiol 57:, 1117–1125. [CrossRef][PubMed]
    [Google Scholar]
  2. Albert R. A., Archambault J., Lempa M., Hurst B., Richardson C., Gruenloh S., Duran M., Worliczek H. L., Huber B. E.. & other authors ( 2007;). Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov.. Int J Syst Evol Microbiol 57:, 2729–2737. [CrossRef][PubMed]
    [Google Scholar]
  3. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D.. ( 1991;). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. . Lett Appl Microbiol 13:, 202–206. [CrossRef]
    [Google Scholar]
  4. Chang Y. H., Han J. I., Chun J. S., Lee K. C., Rhee M. S., Kim Y. B., Bae K. S.. ( 2002;). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. . Int J Syst Evol Microbiol 52:, 377–381.[PubMed]
    [Google Scholar]
  5. Chang Y. H., Jung M. Y., Park I. S., Oh H. M.. ( 2008;). Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. . Int J Syst Evol Microbiol 58:, 2316–2320. [CrossRef][PubMed]
    [Google Scholar]
  6. Claus D., Fritze D., Kocur M.. ( 1992;). Genera related to the genus Bacillus – Sporolactobacillus, Sporosarcina, Planococcus, Filibacter and Caryophanon. . In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, , 2nd edn., vol. 2, pp. 1769–1791. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  7. Coorevits A., Dinsdale A. E., Heyrman J., Schumann P., Van Landschoot A., Logan N. A., De Vos P.. ( 2012;). Lysinibacillus macroides sp. nov., nom. rev.. Int J Syst Evol Microbiol 62:, 1121–1127. [CrossRef][PubMed]
    [Google Scholar]
  8. DSMZ ( 2001;). Catalogue of Strains, 7th edn, p. 617. Braunschweig: DSMZ. http://www.dsmz.de/fileadmin/Bereiche/Microbiology/Dateien/Key_to_Murein2.pdf.
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Farrow J. A. E., Wallbanks S., Collins M. D.. ( 1994;). Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus.. Int J Syst Bacteriol 44:, 74–82. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  13. Felsenstein, J. (1993). phylip (phylogeny inference package), version 3.5c, Seattle: Department of Genetics, University of Washington.
  14. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  15. Glazunova O. O., Raoult D., Roux V.. ( 2006;). Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. . Int J Syst Evol Microbiol 56:, 1485–1488. [CrossRef][PubMed]
    [Google Scholar]
  16. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  17. Heyrman J., Rodríguez-Díaz M., Devos J., Felske A., Logan N. A., De Vos P.. ( 2005;). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 55:, 111–117. [CrossRef][PubMed]
    [Google Scholar]
  18. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J.. ( 2005;). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21:, 3171–3173. [CrossRef][PubMed]
    [Google Scholar]
  19. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  20. Kämpfer P., Blasczyk K., Auling G.. ( 1994;). Characterization of Aeromonas genomic species by using quinone, polyamine, and fatty acid patterns. . Can J Microbiol 40:, 844–850. [CrossRef][PubMed]
    [Google Scholar]
  21. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  22. Keddie R. M., Jones D.. ( 1992;). The genus Kurthia. . In The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, , 2nd edn., vol. 2, pp. 1654–1662. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  23. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  24. Krishnamurthi S., Chakrabarti T., Stackebrandt E.. ( 2009;). Re-examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov. as Solibacillus silvestris comb. nov.. Int J Syst Evol Microbiol 59:, 1054–1058. [CrossRef][PubMed]
    [Google Scholar]
  25. Krishnamurthi S., Ruckmani A., Pukall R., Chakrabarti T.. ( 2010;). Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov.. Syst Appl Microbiol 33:, 367–373. [CrossRef][PubMed]
    [Google Scholar]
  26. La Duc M. T., Satomi M., Venkateswaran K.. ( 2004;). Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. . Int J Syst Evol Microbiol 54:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  27. Lee C. S., Jung Y.-T., Park S., Oh T.-K., Yoon J.-H.. ( 2010;). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus.. Int J Syst Evol Microbiol 60:, 281–286. [CrossRef][PubMed]
    [Google Scholar]
  28. MacKenzie S. L.. ( 1987;). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  29. Miwa H., Ahmed I., Yokota A., Fujiwara T.. ( 2009;). Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. . Int J Syst Evol Microbiol 59:, 1427–1432. [CrossRef][PubMed]
    [Google Scholar]
  30. Nakamura L. K., Shida O., Takagi H., Komagata K.. ( 2002;). Bacillus pycnus sp. nov. and Bacillus neidei sp. nov., round-spored bacteria from soil. . Int J Syst Evol Microbiol 52:, 501–505.[PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  33. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  34. Shaw S., Keddie R. M.. ( 1983;). A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov.. Syst Appl Microbiol 4:, 253–276. [CrossRef]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Tindall B. J.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  37. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  38. Vaishampayan P., Miyashita M., Ohnishi A., Satomi M., Rooney A., La Duc M. T., Venkateswaran K.. ( 2009;). Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov.. Int J Syst Evol Microbiol 59:, 1094–1099. [CrossRef][PubMed]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  40. Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R.. & other authors ( 1980;). Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. . Nucleic Acids Res 8:, 2275–2293. [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon J. H., Lee K. C., Weiss N., Kho Y. H., Kang K. H., Park Y. H.. ( 2001;). Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. . Int J Syst Evol Microbiol 51:, 1079–1086. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033837-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033837-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error