1887

Abstract

Two anaerobic bacterial strains, designated SHI-1 and SHI-2, were isolated from chlorinated solvent-contaminated groundwater. They were found to be identical in phenotypic properties and shared high (98.5–99.8 %) pairwise 16S rRNA gene sequence similarity. Multiple 16S rRNA genes were found to be present in the isolates as well as DSM 17108 and DSM 13327. Strains SHI-1 and SHI-2 could be differentiated from their closest phylogenetic relatives, DSM 17108 and DSM 13327, on the basis of their phenotypic and phylogenetic properties. The isolates were Gram-negative, spore-forming, motile rods with peritrichous flagella. Growth occurred at 10–42 °C and pH 5.5–8.5. Fermentative growth was observed on Casamino acids, fructose, fumarate, glucose, glycerol, pyruvate and yeast extract. The major organic acids produced from glucose and glycerol fermentation were propionate and acetate. The major organic acids produced from fermentation of fumarate were propionate, acetate and succinate. The major cellular fatty acids were summed feature 4 (consisting of Cω8 and/or C), summed feature 8 (consisting of Cω8 and/or C) and C dimethyl aldehyde. The polar lipids comprised aminophospholipids, including phosphatidylethanolamine and phosphatidylserine, and an unknown phospholipid. The genomic DNA G+C content was 39.2 mol%. We propose that strains SHI-1 and SHI-2 are assigned to a novel species of the genus , with the name sp. nov. (type strain SHI-1  = NRRL Y-59407  = LMG 25549). The description of the genus is emended. We also propose the transfer of to the genus as comb. nov. (type strain TmPN3 = DSM 13327 = ATCC BAA-626), on the basis of phylogenetic, chemotaxonomic and phenotypic properties.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033753-0
2012-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1369.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033753-0&mimeType=html&fmt=ahah

References

  1. Bae H.-S., Rash B. A., Rainey F. A., Nobre M. F., Tiago I., da Costa M. S., Moe W. M.. ( 2007;). Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. . Int J Syst Evol Microbiol 57:, 1521–1526. [CrossRef][PubMed]
    [Google Scholar]
  2. Boga H. I., Ji R., Ludwig W., Brune A.. ( 2007;). Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. . Arch Microbiol 187:, 15–27. [CrossRef][PubMed]
    [Google Scholar]
  3. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  5. Euzéby J.. ( 2007;). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 57:, 893–897. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Gevers D., Huys G., Swings J.. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. . FEMS Microbiol Lett 205:, 31–36. [CrossRef][PubMed]
    [Google Scholar]
  8. Goris J., Suzuki K.-I., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  9. Hansel C. M., Fendorf S., Jardine P. M., Francis C. A.. ( 2008;). Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. . Appl Environ Microbiol 74:, 1620–1633. [CrossRef][PubMed]
    [Google Scholar]
  10. Holdeman L. V., Cato E. P., Moore W. E. C.. ( 1977;). Anaerobe Laboratory Manual, , 4th edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  11. Kane M. D., Breznak J. A.. ( 1991;). Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. . Arch Microbiol 156:, 91–98. [CrossRef][PubMed]
    [Google Scholar]
  12. Kelly D. P., Wood A. P.. ( 1998;). Microbes of the sulfur cycle. . In Techniques in Microbial Ecology, pp. 31–57. Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Sayler G... New York:: Oxford University Press;.
    [Google Scholar]
  13. Lovley D. R., Phillips E. J. P.. ( 1986;). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. . Appl Environ Microbiol 52:, 751–757.[PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromathography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Moe W. M., Yan J., Nobre M. F., da Costa M. S., Rainey F. A.. ( 2009;). Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. . Int J Syst Evol Microbiol 59:, 2692–2697. [CrossRef][PubMed]
    [Google Scholar]
  16. Powers E. M. .( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  17. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. ( 1996a;). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int J Syst Bacteriol 46:, 1088–1092. [CrossRef][PubMed]
    [Google Scholar]
  18. Rainey F. A., Ward-Rainey N. L., Janssen P. H., Hippe H., Stackebrandt E.. ( 1996b;). Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. . Microbiology 142:, 2087–2095. [CrossRef][PubMed]
    [Google Scholar]
  19. Ray A. E., Connon S. A., Sheridan P. P., Gilbreath J., Shields M., Newby D. T., Fujita Y., Magnuson T. S.. ( 2010;). Intragenomic heterogeneity of the 16S rRNA gene in strain UFO1 caused by a 100-bp insertion in helix 6. . FEMS Microbiol Ecol 72:, 343–353. [CrossRef][PubMed]
    [Google Scholar]
  20. Rogosa M.. ( 1971;). Transfer of Veillonella Prévot and Acidaminococcus Rogosa from Neisseriaceae to Veillonellaceae fam. nov., and the inclusion of Megasphaera Rogosa in Veillonellaceae. . Int J Syst Bacteriol 21:, 231–233. [CrossRef]
    [Google Scholar]
  21. Ross H. N. M., Grant W. D.. ( 1985;). Lipids in archaebacterial taxonomy. . In Chemical Methods in Bacterial Systematics, pp. 290–291. Edited by Goodfellow M., Minnikin D. E... New York:: Academic Press;.
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  23. Sattley W. M., Jung D. O., Madigan M. T.. ( 2008;). Psychrosinus fermentans gen. nov., sp. nov., a lactate-fermenting bacterium from near-freezing oxycline waters of a meromictic Antarctic lake. . FEMS Microbiol Lett 287:, 121–127. [CrossRef][PubMed]
    [Google Scholar]
  24. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H.. ( 2000;). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50:, 771–779. [CrossRef][PubMed]
    [Google Scholar]
  25. Shelobolina E. S., Nevin K. P., Blakeney-Hayward J. D., Johnsen C. V., Plaia T. W., Krader P., Woodard T., Holmes D. E., Vanpraagh C. G., Lovley D. R. .( 2007;). Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. . Int J Syst Evol Microbiol 57:, 126–135. [CrossRef][PubMed]
    [Google Scholar]
  26. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H. .( 1997;). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov.. Int J Syst Bacteriol 47:, 1134–1139. [CrossRef][PubMed]
    [Google Scholar]
  27. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. .( 1999;). A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 1861–1872. [CrossRef][PubMed]
    [Google Scholar]
  28. Van Ginkel S. V., Sung S., Lay J. J. .( 2001;). Biohydrogen production as a function of pH and substrate concentration. . Environ Sci Technol 35:, 4726–4730. [CrossRef][PubMed]
    [Google Scholar]
  29. Villemur R., Constant P., Gauthier A., Shareck M., Beaudet R. .( 2007;). Heterogeneity between 16S ribosomal RNA gene copies borne by one Desulfitobacterium strain is caused by different 100-200 bp insertions in the 5′ region. . Can J Microbiol 53:, 116–128. [CrossRef][PubMed]
    [Google Scholar]
  30. Widdel F., Kohring G. W., Mayer F. .( 1983;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov.. Arch Microbiol 134:, 286–294. [CrossRef]
    [Google Scholar]
  31. Wolin E. A., Wolin M. J., Wolfe R. S. .( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
  32. Wu M., Ren Q., Durkin A. S., Daugherty S. C., Brinkac L. M., Dodson R. J., Madupu R., Sullivan S. A., Kolonay J. F.. & other authors ( 2005;). Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. . PLoS Genet 1:, e65. [CrossRef][PubMed]
    [Google Scholar]
  33. Yan J., Rash B. A., Rainey F. A., Moe W. M.. ( 2009;). Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1, 2, 3-trichloropropane. . Environ Microbiol 11:, 833–843. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033753-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033753-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error