1887

Abstract

Strain SulfLac1, a thermophilic, anaerobic and slightly halophilic, rod-shaped bacterium with a sheath-like outer structure (toga), was isolated from a whey digester in Tunisia. The strain’s non-motile cells measured 3–30×1 µm and appeared singly, in pairs or as long chains. The novel strain reduced thiosulfate and elemental sulfur, but not sulfate or sulfite, into sulfide. It grew at 37–65 °C (optimum 55 °C), at pH 6.5–7.9 (optimum pH 6.9) and with 0.2–3 % (w/v) NaCl (optimum 0.5 %). The G+C content of the strain’s genomic DNA was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SulfLac1 was most closely related to (91.4 % sequence similarity). Based on phenotypic, phylogenetic and chemotaxonomic evidence, strain SulfLac1 represents a novel species of a new genus within the order , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is SulfLac1 ( = DSM 23805  = JCM 17210).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033720-0
2012-06-01
2021-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/6/1377.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033720-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Antoine E., Cilia V., Meunier J.-R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123 [CrossRef][PubMed]
    [Google Scholar]
  3. Briones A. M., Daugherty B. J., Angenent L. T., Rausch K. D., Tumbleson M. E., Raskin L. 2007; Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environ Microbiol 9:93–106 [CrossRef][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  5. Chouari R., Le Paslier D., Daegelen P., Ginestet P., Weissenbach J., Sghir A. 2005; Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115 [CrossRef][PubMed]
    [Google Scholar]
  6. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  7. Davey M. E., Wood W. A., Key R., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘Thermotogales’. Syst Appl Microbiol 16:191–200 [CrossRef]
    [Google Scholar]
  8. DiPippo J. L., Nesbø C. L., Dahle H., Doolittle W. F., Birkland N.-K., Noll K. M. 2009; Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000 [CrossRef][PubMed]
    [Google Scholar]
  9. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  10. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef][PubMed]
    [Google Scholar]
  11. Fardeau M.-L., Goulhen F., Bruschi M., Khelifi N., Cayol J.-L., Ignatiadis I., Guyot F., Ollivier B. 2009; Archaeoglobus fulgidus and Thermotoga elfii, thermophilic isolates from deep geothermal water of the Paris Basin. Geomicrobiol J 26:119–130 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–787 [CrossRef]
    [Google Scholar]
  14. Feng Y., Cheng L., Zhang X., Li X., Deng Y., Zhang H. 2010; Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 60:932–937 [CrossRef][PubMed]
    [Google Scholar]
  15. Hall T. 1999; BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Huber R., Hannig M. 2006; Thermotogales . In The Prokaryotes pp. 899–922 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; [CrossRef]
    [Google Scholar]
  17. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333 [CrossRef]
    [Google Scholar]
  18. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales’. Syst Appl Microbiol 12:32–37 [CrossRef]
    [Google Scholar]
  19. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [CrossRef]
    [Google Scholar]
  20. Jayasinghearachchi H. S., Lal B. 2011; Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560 [CrossRef][PubMed]
    [Google Scholar]
  21. Khelifi N., Ben Romdhane E., Hedi A., Postec A., Fardeau M.-L., Hamdi M., Tholozan J.-L., Ollivier B., Hirschler-Réa A. 2010; Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. Extremophiles 14:297–304 [CrossRef][PubMed]
    [Google Scholar]
  22. Kuykendall L. D., Roy M. A., O’Neil J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  23. Li T., Mazéas L., Sghir A., Leblon G., Bouchez T. 2009; Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904 [CrossRef][PubMed]
    [Google Scholar]
  24. Liang D. W., Fang H. H. P., Zhang T. J. 2009; Microbial characterization and quantification of an anaerobic sludge degrading dimethyl phthalate. J Appl Microbiol 106:296–305 [CrossRef][PubMed]
    [Google Scholar]
  25. Lien T., Madsen M., Rainey F. A., Birkeland N.-K. 1998; Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48:1007–1013 [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  27. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  28. Miranda-Tello E., Fardeau M.-L., Thomas P., Ramirez F., Casalot L., Cayol J.-L., Garcia J.-L., Ollivier B. 2004; Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174 [CrossRef][PubMed]
    [Google Scholar]
  29. Miranda-Tello E., Fardeau M.-L., Joulian C., Magot M., Thomas P., Tholozan J.-L., Ollivier B. 2007; Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44 [CrossRef][PubMed]
    [Google Scholar]
  30. Nesbø C. L., Dlutek M., Zhaxybayeva O., Doolittle W. F. 2006; Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 72:5061–5068 [CrossRef][PubMed]
    [Google Scholar]
  31. Nesbø C. L., Kumaraswamy R., Dlutek M., Doolittle W. F., Foght J. 2010; Searching for mesophilic Thermotogales bacteria: “mesotogas” in the wild. Appl Environ Microbiol 76:4896–4900 [CrossRef][PubMed]
    [Google Scholar]
  32. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69 [CrossRef]
    [Google Scholar]
  33. Postec A., Le Breton C., Fardeau M. L., Lesongeur F., Pignet P., Querellou J., Ollivier B., Godfroy A. 2005; Marinitoga hydrogenotolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid- Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221 [CrossRef][PubMed]
    [Google Scholar]
  34. Rivière D., Desvignes V., Pelletier E., Chaussonnerie S., Guermazi S., Weissenbach J., Li T., Camacho P., Sghir A. 2009; Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  36. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  37. Urios L., Cueff-Gauchard V., Pignet P., Postec A., Fardeau M.-L., Ollivier B., Barbier G. 2004; Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957 [CrossRef][PubMed]
    [Google Scholar]
  38. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  39. van Houten B. H., van Doesburg W., Dijkman H., Copini C., Smidt H., Stams A. J. 2009; Long-term performance and microbial community analysis of a full-scale synthesis gas fed reactor treating sulfate- and zinc-rich wastewater. Appl Microbiol Biotechnol 84:555–563 [CrossRef][PubMed]
    [Google Scholar]
  40. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M.-A., Godfroy A., Barbier G. 2001; Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504[PubMed] [CrossRef]
    [Google Scholar]
  41. Widdel F., Pfennig N. 1982; Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov.. Arch Microbiol 131:360–365 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033720-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033720-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error