1887

Abstract

A taxonomic study was carried out on a cellulase-producing bacterium, strain G21, isolated from mangrove soil in Xiamen, Fujian province, China. Cells were Gram-negative, slightly curved rods, motile with a single polar flagellum. The strain grew at 15–40 °C and in 0.5–10 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G21 belonged to the genus and formed a clade with ATCC 350116 (97.4 % sequence similarity), LMG 7894 (97.1 %) and CECT 5869 (96.1 %). However, multilocus sequence analysis (using , , , , and sequences) and DNA–DNA hybridization experiments indicated that the strain was distinct from the closest related species. Additionally, strain G21 could be differentiated from them phenotypically by the ability to grow in 10 % NaCl but not on TCBS plates, its enzyme activity spectrum, citrate utilization, oxidization of various carbon sources, hydrolysis of several substrates and its cellular fatty acid profile. The G+C content of the genomic DNA was 46.0 mol%. The major cellular fatty acids were summed feature 3 (Cω7 and/or iso-C 2-OH), C and Cω7. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol, with trace amounts of diphosphatidylglycerol. The predominant quinones were Q-8 and Q-7. Based on phylogenetic, phenotypic and chemotaxonomic characteristics and DNA–DNA hybridization analysis, it is concluded that strain G21 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is G21 ( = DSM 22851  = CGMCC 1.10228).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033597-0
2012-08-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/8/1958.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033597-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Furniss A. L., Lee J. V.. ( 1984;). Genus I. Vibrio Pacini 1854. . In Bergey's Manual of Systematic Bacteriology, pp. 518–538. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  2. Beaz-Hidalgo R., Cleenwerck I., Balboa S., Prado S., De Vos P., Romalde J. L.. ( 2009;). Vibrio breoganii sp. nov., a non-motile, alginolytic, marine bacterium within the Vibrio halioticoli clade. . Int J Syst Evol Microbiol 59:, 1589–1594. [CrossRef][PubMed]
    [Google Scholar]
  3. Bleicher A., Neuhaus K., Scherer S.. ( 2010;). Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. . Int J Syst Evol Microbiol 60:, 1745–1749. [CrossRef][PubMed]
    [Google Scholar]
  4. Chang H. W., Roh S. W., Kim K. H., Nam Y. D., Jeon C. O., Oh H. M., Bae J. W.. ( 2008;). Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand. . Int J Syst Evol Microbiol 58:, 1903–1906. [CrossRef][PubMed]
    [Google Scholar]
  5. Chimetto L. A., Cleenwerck I., Alves N. Jr, Silva B. S., Brocchi M., Willems A., De Vos P., Thompson F. L.. ( 2011a;). Vibrio communis sp. nov., isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei. . Int J Syst Evol Microbiol 61:, 362–368. [CrossRef][PubMed]
    [Google Scholar]
  6. Chimetto L., Cleenwerck I., Moreira A. P. B., Brocchi M., Willems A., De Vos P., Thompson F. L.. ( 2011b;). Vibrio variabilis sp. nov. and Vibrio marinus sp. nov., isolated from Palythoa caribaeorum. . Int J Syst Evol Microbiol 61:, 3009–3015. [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  8. Coram N. J., Rawlings D. E.. ( 2002;). Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. . Appl Environ Microbiol 68:, 838–845. [CrossRef][PubMed]
    [Google Scholar]
  9. Diéguez A. L., Beaz-Hidalgo R., Cleenwerck I., Balboa S., de Vos P., Romalde J. L.. ( 2011;). Vibrio atlanticus sp. nov. and Vibrio artabrorum sp. nov., isolated from the clams Ruditapes philippinarum and Ruditapes decussatus. . Int J Syst Evol Microbiol 61:, 2406–2411. [CrossRef][PubMed]
    [Google Scholar]
  10. Dong X.-Z., Cai M.-Y.. (editors) ( 2001;). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398. Beijing:: Science Press; (in Chinese).
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. Gao Z. M., Ruan L. W., Chen X. L., Zhang Y. Z., Xu X.. ( 2010;). A novel salt-tolerant endo-beta-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. . Appl Microbiol Biotechnol 87:, 1373–1382. [CrossRef][PubMed]
    [Google Scholar]
  13. Gomez-Gil B., Fajer-Avila E. F., Pascual J., Macián M. C., Pujalte M. J., Garay E., Roque A.. ( 2008;). Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus guttatus Steindachner, 1869. . Int J Syst Evol Microbiol 58:, 1621–1624. [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffmann M., Monday S. R., Allard M. W., Strain E. A., Whittaker P., Naum M., McCarthy P. J., Lopez J. V., Fischer M., Brown E. W.. ( 2012;). Vibrio caribbeanicus sp. nov., isolated from marine sponge Scleritoderma cyanea. . Int J Syst Evol Microbiol 62:, 1736–1743. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  17. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55:, 1181–1186. [CrossRef][PubMed]
    [Google Scholar]
  18. Macián M. C., Garay E., Grimont P. A., Pujalte M. J.. ( 2004;). Vibrio ponticus sp. nov., a neighbour of V. fluvialis-V. furnissii clade, isolated from gilthead sea bream, mussels and seawater. . Syst Appl Microbiol 27:, 535–540. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  20. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  21. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Rameshkumar N., Fukui Y., Sawabe T., Nair S.. ( 2008;). Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 1608–1615. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1997;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  25. Sawabe T., Kita-Tsukamoto K., Thompson F. L.. ( 2007;). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. . J Bacteriol 189:, 7932–7936. [CrossRef][PubMed]
    [Google Scholar]
  26. Sheu S. Y., Jiang S. R., Chen C. A., Wang J. T., Chen W. M.. ( 2011;). Vibrio stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. . Int J Syst Evol Microbiol 61:, 2180–2185. [CrossRef][PubMed]
    [Google Scholar]
  27. Syn C. K., Swarup S.. ( 2000;). A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. . Anal Biochem 278:, 86–90. [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  29. Teather R. M., Wood P. J.. ( 1982;). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. . Appl Environ Microbiol 43:, 777–780.[PubMed]
    [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson F. L., Iida T., Swings J.. ( 2004;). Biodiversity of vibrios. . Microbiol Mol Biol Rev 68:, 403–431. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J.. ( 2005;). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. . Appl Environ Microbiol 71:, 5107–5115. [CrossRef][PubMed]
    [Google Scholar]
  33. Wang Y., Zhang X. H., Yu M., Wang H., Austin B.. ( 2010;). Vibrio atypicus sp. nov., isolated from the digestive tract of the Chinese prawn (Penaeus chinensis O’sbeck). . Int J Syst Evol Microbiol 60:, 2517–2523. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang H., Liu J., Wang Y., Zhang X. H.. ( 2011;). Vibrio marisflavi sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 568–573. [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  36. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  37. Wilkinson S. G.. ( 1988;). Gram-negative bacteria. . In Microbial Lipids, vol. 1, pp. 299–488. Edited by Ratledge C., Wilkinson S. G... New York:: Academic Press;.
    [Google Scholar]
  38. Xu X. W., Wu Y. H., Wang C. S., Oren A., Wu M.. ( 2009;). Vibrio hangzhouensis sp. nov., isolated from sediment of the East China Sea. . Int J Syst Evol Microbiol 59:, 2099–2103. [CrossRef][PubMed]
    [Google Scholar]
  39. Yoshizawa S., Wada M., Kita-Tsukamoto K., Ikemoto E., Yokota A., Kogure K.. ( 2009;). Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. . Int J Syst Evol Microbiol 59:, 1645–1649. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033597-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033597-0
Loading

Data & Media loading...

Supplements

Supplementary Figs S1-S9 and Table S1 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error