1887

Abstract

A heterotrophic, aerobic bacterium, designated strain SH6-1, was obtained from a seawater sample collected from the open North Sea during a phytoplankton bloom. Strain SH6-1 was isolated from a 10 dilution culture, which indicated a high abundance of this organism in the environmental sample. 16S rRNA gene sequence comparison revealed that strain SH6-1 belonged to the marine clade (order ) within the class . CL-ES2 was the closest phylogenetic neighbour (96.4 % 16S rRNA gene sequence similarity). Cells of strain SH6-1 were small or elongated irregular rods. Optimal growth occurred between 20 and 25 °C and between pH 7.5 and 9.0 with peptone and yeast extract. On marine agar, the isolate formed non-pigmented, small, circular, convex colonies. For growth, cells required sodium ions and the vitamins pantothenic acid and nicotinic acid amide. The DNA G+C content was 53.8 mol%. The fatty acids (>1 %) were C 3-OH, C, C, C 3-OH, C, Cω7, C and 11-methyl Cω7. The polar lipid pattern indicated the presence of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and one unidentified phospholipid. The major respiratory lipoquinone was ubiquinone Q-10. Strain SH6-1 contained the genes , which code for the bacterial photosynthesis reaction centre; however, no bacteriochlorophyll could be detected. Physiological, genotypic and phenotypic differences from support the description of a novel genus and species, for which we suggest the name gen. nov., sp. nov; the type strain of the type species is SH6-1 ( = DSM 23709 = LMG 25294).

Funding
This study was supported by the:
  • Lower Saxonian Volkswagen Foundation (VW-Vorab)
  • Lower Saxonian–Israeli joint program
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033563-0
2012-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/7/1619.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033563-0&mimeType=html&fmt=ahah

References

  1. Alderkamp A. C., Sintes E., Herndl G. J. 2006; Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquat Microb Ecol 45:237–246 [View Article]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  3. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F. 2002; Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633 [View Article][PubMed]
    [Google Scholar]
  4. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp.. Appl Environ Microbiol 63:3789–3796[PubMed]
    [Google Scholar]
  5. Brinkhoff T., Bach G., Heidorn T., Liang L., Schlingloff A., Simon M. 2004; Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565 [View Article][PubMed]
    [Google Scholar]
  6. Brinkhoff T., Giebel H.-A., Simon M. 2008; Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539 [View Article][PubMed]
    [Google Scholar]
  7. Buchan A., González J. M., Moran M. A. 2005; Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677 [View Article][PubMed]
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  9. Chávez F. P., Lünsdorf H., Jerez C. A. 2004; Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072 [View Article][PubMed]
    [Google Scholar]
  10. Clayton R. K. 1966; Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo . Photochem Photobiol 5:669–677 [View Article]
    [Google Scholar]
  11. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R. 2001; Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142 [View Article][PubMed]
    [Google Scholar]
  12. Kim Y.-G., Hwang C. Y., Cho B. C. 2008; Pelagicola litoralis gen. nov., sp. nov., isolated from coastal water in Korea. Int J Syst Evol Microbiol 58:2102–2106 [View Article][PubMed]
    [Google Scholar]
  13. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [View Article][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  15. Martens T., Heidorn T., Pukall R., Simon M., Tindall B. J., Brinkhoff T. 2006; Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera . Int J Syst Evol Microbiol 56:1293–1304 [View Article][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  17. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. 1999; A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov.. Int J Syst Bacteriol 49:1861–1872 [View Article][PubMed]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  21. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  22. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  23. Tindall B. J. 1996; Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual (section 4.1.5, suppl. 1) Edited by Akkermans A., de Bruijn F., van Elsas D. Dordrecht: Kluwer;
    [Google Scholar]
  24. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [View Article]
    [Google Scholar]
  25. Wagner-Döbler I., Biebl H. 2006; Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280 [View Article][PubMed]
    [Google Scholar]
  26. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. 2004; Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 54:1177–1184 [View Article][PubMed]
    [Google Scholar]
  27. Zech H., Thole S., Schreiber K., Kalhöfer D., Voget S., Brinkhoff T., Simon M., Schomburg D., Rabus R. 2009; Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 9:3677–3697 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033563-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033563-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error