1887

Abstract

A novel anaerobic, thermophilic, syntrophic, fatty-acid-oxidizing bacterium, strain L-60, was isolated from a Chinese hot spring. Cells of the strain were non-motile, non-spore-forming, slightly curved rods. Growth occurred between 55 and 70 °C (optimum about 60 °C) and at pH 7.0–9.3 (optimum about pH 8.2). Crotonate was the only tested carbon source that supported the growth of the strain in pure culture. In co-culture with the thermophilic, hydrogenotrophic DSM 1053, the isolate could oxidize saturated straight-chain fatty acids with 4–18 carbon atoms, and also unsaturated fatty acids such as oleate, syntrophically. The strain was unable to utilize sulfate, sulfite, thiosulfate, nitrate, fumarate or Fe(III) as electron acceptors. The major cellular fatty acids were C (35.0 %), C (20.3 %) and iso-C I/anteiso-C B (30.9 %). The genomic DNA G+C content was 40.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was affiliated to the family and was most closely related to DSM 11003 (96.7 % similarity). On the basis of phylogenetic and phenotypic evidence, it is proposed that strain L-60 represents a novel species, for which the name sp. nov. is proposed. The type strain is L-60 ( = CGMCC 1.5161  = JCM 17260).

Funding
This study was supported by the:
  • National Science Foundation of China (Award 30621005 and 30830007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.033456-0
2012-04-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/759.html?itemId=/content/journal/ijsem/10.1099/ijs.0.033456-0&mimeType=html&fmt=ahah

References

  1. Beaty P. S., McInerney M. J. 1987; Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389–393 [View Article]
    [Google Scholar]
  2. Hatamoto M., Imachi H., Fukayo S., Ohashi A., Harada H. 2007; Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol 57:2137–2142 [View Article][PubMed]
    [Google Scholar]
  3. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  4. Jackson B. E., Bhupathiraju V. K., Tanner R. S., Woese C. R., McInerney M. J. 1999; Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114 [View Article][PubMed]
    [Google Scholar]
  5. Liu Y., Balkwill D. L., Aldrich H. C., Drake G. R., Boone D. R. 1999; Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii . Int J Syst Bacteriol 49:545–556 [View Article][PubMed]
    [Google Scholar]
  6. Lorowitz W. H., Zhao H., Bryant M. P. 1989; Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain-fatty-acid-degrading, anaerobic syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–126 [View Article]
    [Google Scholar]
  7. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  8. McInerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135 [View Article]
    [Google Scholar]
  9. McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039[PubMed]
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  11. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics pp. 67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  12. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [View Article][PubMed]
    [Google Scholar]
  13. Roy F., Samain E., Dubourguier H., Albagnac G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147 [View Article]
    [Google Scholar]
  14. Sasser M. 2001; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  15. Schink B. 1992; Syntrophism among prokaryotes. In The Prokaryotes, 2nd edn. pp. 276–299 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  16. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280[PubMed]
    [Google Scholar]
  17. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [View Article][PubMed]
    [Google Scholar]
  18. Sousa D. Z., Smidt H., Alves M. M., Stams A. J. M. 2007; Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum . Int J Syst Evol Microbiol 57:609–615 [View Article][PubMed]
    [Google Scholar]
  19. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390 [View Article]
    [Google Scholar]
  20. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  23. Zhang C., Liu X., Dong X. 2004; Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973 [View Article][PubMed]
    [Google Scholar]
  24. Zhang C., Liu X., Dong X. 2005; Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803 [View Article][PubMed]
    [Google Scholar]
  25. Zhao H. X., Yang D. C., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.033456-0
Loading
/content/journal/ijsem/10.1099/ijs.0.033456-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error